多物理场仿真指导下的生成扩散模型在流体和热动力学中的应用

Naichen Shi, Hao Yan, Shenghan Guo, Raed Al Kontar
{"title":"多物理场仿真指导下的生成扩散模型在流体和热动力学中的应用","authors":"Naichen Shi, Hao Yan, Shenghan Guo, Raed Al Kontar","doi":"arxiv-2407.17720","DOIUrl":null,"url":null,"abstract":"In this paper, we present a generic physics-informed generative model called\nMPDM that integrates multi-fidelity physics simulations with diffusion models.\nMPDM categorizes multi-fidelity physics simulations into inexpensive and\nexpensive simulations, depending on computational costs. The inexpensive\nsimulations, which can be obtained with low latency, directly inject contextual\ninformation into DDMs. Furthermore, when results from expensive simulations are\navailable, MPDM refines the quality of generated samples via a guided diffusion\nprocess. This design separates the training of a denoising diffusion model from\nphysics-informed conditional probability models, thus lending flexibility to\npractitioners. MPDM builds on Bayesian probabilistic models and is equipped\nwith a theoretical guarantee that provides upper bounds on the Wasserstein\ndistance between the sample and underlying true distribution. The probabilistic\nnature of MPDM also provides a convenient approach for uncertainty\nquantification in prediction. Our models excel in cases where physics\nsimulations are imperfect and sometimes inaccessible. We use a numerical\nsimulation in fluid dynamics and a case study in heat dynamics within\nlaser-based metal powder deposition additive manufacturing to demonstrate how\nMPDM seamlessly integrates multi-idelity physics simulations and observations\nto obtain surrogates with superior predictive performance.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-physics Simulation Guided Generative Diffusion Models with Applications in Fluid and Heat Dynamics\",\"authors\":\"Naichen Shi, Hao Yan, Shenghan Guo, Raed Al Kontar\",\"doi\":\"arxiv-2407.17720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a generic physics-informed generative model called\\nMPDM that integrates multi-fidelity physics simulations with diffusion models.\\nMPDM categorizes multi-fidelity physics simulations into inexpensive and\\nexpensive simulations, depending on computational costs. The inexpensive\\nsimulations, which can be obtained with low latency, directly inject contextual\\ninformation into DDMs. Furthermore, when results from expensive simulations are\\navailable, MPDM refines the quality of generated samples via a guided diffusion\\nprocess. This design separates the training of a denoising diffusion model from\\nphysics-informed conditional probability models, thus lending flexibility to\\npractitioners. MPDM builds on Bayesian probabilistic models and is equipped\\nwith a theoretical guarantee that provides upper bounds on the Wasserstein\\ndistance between the sample and underlying true distribution. The probabilistic\\nnature of MPDM also provides a convenient approach for uncertainty\\nquantification in prediction. Our models excel in cases where physics\\nsimulations are imperfect and sometimes inaccessible. We use a numerical\\nsimulation in fluid dynamics and a case study in heat dynamics within\\nlaser-based metal powder deposition additive manufacturing to demonstrate how\\nMPDM seamlessly integrates multi-idelity physics simulations and observations\\nto obtain surrogates with superior predictive performance.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种名为 MPDM 的通用物理信息生成模型,它将多保真度物理模拟与扩散模型集成在一起。MPDM 根据计算成本的不同,将多保真度物理模拟分为廉价模拟和昂贵模拟。廉价模拟可以在较低的延迟时间内获得,并直接将上下文信息注入 DDM。此外,当昂贵的模拟结果可用时,MPDM 会通过引导扩散过程来改进生成样本的质量。这种设计将去噪扩散模型的训练从物理信息条件概率模型中分离出来,从而为实践者提供了灵活性。MPDM 建立在贝叶斯概率模型的基础上,具有理论保证,为样本与底层真实分布之间的瓦瑟斯特距离提供了上限。MPDM 的概率性质还为预测中的不确定性量化提供了便捷的方法。我们的模型在物理模拟不完善、有时无法进入的情况下表现出色。我们利用流体动力学数值模拟和基于激光的金属粉末沉积快速成型制造中的热动力学案例研究,展示了 MPDM 如何无缝集成多保真度物理模拟和观测,从而获得具有卓越预测性能的替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-physics Simulation Guided Generative Diffusion Models with Applications in Fluid and Heat Dynamics
In this paper, we present a generic physics-informed generative model called MPDM that integrates multi-fidelity physics simulations with diffusion models. MPDM categorizes multi-fidelity physics simulations into inexpensive and expensive simulations, depending on computational costs. The inexpensive simulations, which can be obtained with low latency, directly inject contextual information into DDMs. Furthermore, when results from expensive simulations are available, MPDM refines the quality of generated samples via a guided diffusion process. This design separates the training of a denoising diffusion model from physics-informed conditional probability models, thus lending flexibility to practitioners. MPDM builds on Bayesian probabilistic models and is equipped with a theoretical guarantee that provides upper bounds on the Wasserstein distance between the sample and underlying true distribution. The probabilistic nature of MPDM also provides a convenient approach for uncertainty quantification in prediction. Our models excel in cases where physics simulations are imperfect and sometimes inaccessible. We use a numerical simulation in fluid dynamics and a case study in heat dynamics within laser-based metal powder deposition additive manufacturing to demonstrate how MPDM seamlessly integrates multi-idelity physics simulations and observations to obtain surrogates with superior predictive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1