基于模型参数的光伏集群热点故障诊断方法

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2024-07-22 DOI:10.1002/ese3.1829
Chi Xiaoni, Dong Wei, Yunxiao He, Minxiang Shen
{"title":"基于模型参数的光伏集群热点故障诊断方法","authors":"Chi Xiaoni,&nbsp;Dong Wei,&nbsp;Yunxiao He,&nbsp;Minxiang Shen","doi":"10.1002/ese3.1829","DOIUrl":null,"url":null,"abstract":"<p>Utilizing the direct current-side electrical data resources of the photovoltaic power generation system on the FusionSolar platform, this study investigates the impact of hot spot faults on the output characteristics of photovoltaic strings and proposes a hot spot fault diagnosis method based on time series waveform characteristics. By analyzing the mechanisms of hot spot generation and evolution, as well as the characteristic differences in <i>I</i>–<i>V</i> curves and time series compared to other types of faults, the waveform variation patterns of hot spots in current and voltage time series are obtained. A function form suitable for hot spot fault waveform characteristics in time series graphs is constructed, and fault diagnosis feature vectors are extracted. Combining field operation and maintenance experience, a fuzzy reasoning fault diagnosis system is established to determine the causes and estimate the severity of hot spot faults. Experimental results indicate that hot spot faults have unique and corresponding variations in the current/voltage time series waveforms of the string output. The constructed function form can clearly represent the waveform variation patterns, and the established fuzzy reasoning system can achieve effective and reliable diagnosis of hot spot faults.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1829","citationCount":"0","resultStr":"{\"title\":\"A fault diagnosis method of hot spots for photovoltaic clusters based on model parameters\",\"authors\":\"Chi Xiaoni,&nbsp;Dong Wei,&nbsp;Yunxiao He,&nbsp;Minxiang Shen\",\"doi\":\"10.1002/ese3.1829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing the direct current-side electrical data resources of the photovoltaic power generation system on the FusionSolar platform, this study investigates the impact of hot spot faults on the output characteristics of photovoltaic strings and proposes a hot spot fault diagnosis method based on time series waveform characteristics. By analyzing the mechanisms of hot spot generation and evolution, as well as the characteristic differences in <i>I</i>–<i>V</i> curves and time series compared to other types of faults, the waveform variation patterns of hot spots in current and voltage time series are obtained. A function form suitable for hot spot fault waveform characteristics in time series graphs is constructed, and fault diagnosis feature vectors are extracted. Combining field operation and maintenance experience, a fuzzy reasoning fault diagnosis system is established to determine the causes and estimate the severity of hot spot faults. Experimental results indicate that hot spot faults have unique and corresponding variations in the current/voltage time series waveforms of the string output. The constructed function form can clearly represent the waveform variation patterns, and the established fuzzy reasoning system can achieve effective and reliable diagnosis of hot spot faults.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1829\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1829\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1829","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 FusionSolar 平台上光伏发电系统的直流侧电气数据资源,研究了热点故障对光伏串输出特性的影响,并提出了一种基于时间序列波形特征的热点故障诊断方法。通过分析热点产生和演变的机制,以及 I-V 曲线和时间序列与其他类型故障相比的特征差异,获得了电流和电压时间序列中热点的波形变化规律。构建了适合时间序列图中热点故障波形特征的函数形式,并提取了故障诊断特征向量。结合现场运行和维护经验,建立了模糊推理故障诊断系统,以确定热点故障的原因并估计其严重程度。实验结果表明,热点故障在组串输出的电流/电压时间序列波形中具有独特的相应变化。所构建的函数形式可以清晰地表示波形变化规律,所建立的模糊推理系统可以实现有效、可靠的热点故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fault diagnosis method of hot spots for photovoltaic clusters based on model parameters

Utilizing the direct current-side electrical data resources of the photovoltaic power generation system on the FusionSolar platform, this study investigates the impact of hot spot faults on the output characteristics of photovoltaic strings and proposes a hot spot fault diagnosis method based on time series waveform characteristics. By analyzing the mechanisms of hot spot generation and evolution, as well as the characteristic differences in IV curves and time series compared to other types of faults, the waveform variation patterns of hot spots in current and voltage time series are obtained. A function form suitable for hot spot fault waveform characteristics in time series graphs is constructed, and fault diagnosis feature vectors are extracted. Combining field operation and maintenance experience, a fuzzy reasoning fault diagnosis system is established to determine the causes and estimate the severity of hot spot faults. Experimental results indicate that hot spot faults have unique and corresponding variations in the current/voltage time series waveforms of the string output. The constructed function form can clearly represent the waveform variation patterns, and the established fuzzy reasoning system can achieve effective and reliable diagnosis of hot spot faults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Similar simulation test of the mechanical properties of layered composite rock mass A novel approach to classify lithology of reservoir formations using GrowNet and Deep-Insight with physic-based feature augmentation Combined genetic algorithm and response surface methodology-based bi-optimization of a vertical-axis wind turbine numerically simulated using CFD Experimental study on the utilization of Fly ash solid waste in tunnel shotcrete materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1