主代理强化学习

Dima Ivanov, Paul Dütting, Inbal Talgam-Cohen, Tonghan Wang, David C. Parkes
{"title":"主代理强化学习","authors":"Dima Ivanov, Paul Dütting, Inbal Talgam-Cohen, Tonghan Wang, David C. Parkes","doi":"arxiv-2407.18074","DOIUrl":null,"url":null,"abstract":"Contracts are the economic framework which allows a principal to delegate a\ntask to an agent -- despite misaligned interests, and even without directly\nobserving the agent's actions. In many modern reinforcement learning settings,\nself-interested agents learn to perform a multi-stage task delegated to them by\na principal. We explore the significant potential of utilizing contracts to\nincentivize the agents. We model the delegated task as an MDP, and study a\nstochastic game between the principal and agent where the principal learns what\ncontracts to use, and the agent learns an MDP policy in response. We present a\nlearning-based algorithm for optimizing the principal's contracts, which\nprovably converges to the subgame-perfect equilibrium of the principal-agent\ngame. A deep RL implementation allows us to apply our method to very large MDPs\nwith unknown transition dynamics. We extend our approach to multiple agents,\nand demonstrate its relevance to resolving a canonical sequential social\ndilemma with minimal intervention to agent rewards.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal-Agent Reinforcement Learning\",\"authors\":\"Dima Ivanov, Paul Dütting, Inbal Talgam-Cohen, Tonghan Wang, David C. Parkes\",\"doi\":\"arxiv-2407.18074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contracts are the economic framework which allows a principal to delegate a\\ntask to an agent -- despite misaligned interests, and even without directly\\nobserving the agent's actions. In many modern reinforcement learning settings,\\nself-interested agents learn to perform a multi-stage task delegated to them by\\na principal. We explore the significant potential of utilizing contracts to\\nincentivize the agents. We model the delegated task as an MDP, and study a\\nstochastic game between the principal and agent where the principal learns what\\ncontracts to use, and the agent learns an MDP policy in response. We present a\\nlearning-based algorithm for optimizing the principal's contracts, which\\nprovably converges to the subgame-perfect equilibrium of the principal-agent\\ngame. A deep RL implementation allows us to apply our method to very large MDPs\\nwith unknown transition dynamics. We extend our approach to multiple agents,\\nand demonstrate its relevance to resolving a canonical sequential social\\ndilemma with minimal intervention to agent rewards.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

契约是一种经济框架,它允许委托人将任务委托给代理人--尽管利益不一致,甚至不需要直接观察代理人的行动。在许多现代强化学习环境中,自利的代理学会执行委托人委托给他们的多阶段任务。我们探索了利用合同激励代理的巨大潜力。我们将委托任务建模为一个 MDP,并研究委托人和代理人之间的弹性博弈,在这种博弈中,委托人学习使用什么合约,而代理人则学习 MDP 策略作为回应。我们提出了一种基于学习的算法来优化委托人的合约,这种算法可以收敛到委托人与代理人博弈的子博弈完美均衡。通过深度 RL 实现,我们可以将我们的方法应用于具有未知过渡动态的超大型 MDP。我们将方法扩展到了多代理,并证明了它在解决典型的顺序社会难题时的相关性,同时将对代理奖励的干预降到了最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Principal-Agent Reinforcement Learning
Contracts are the economic framework which allows a principal to delegate a task to an agent -- despite misaligned interests, and even without directly observing the agent's actions. In many modern reinforcement learning settings, self-interested agents learn to perform a multi-stage task delegated to them by a principal. We explore the significant potential of utilizing contracts to incentivize the agents. We model the delegated task as an MDP, and study a stochastic game between the principal and agent where the principal learns what contracts to use, and the agent learns an MDP policy in response. We present a learning-based algorithm for optimizing the principal's contracts, which provably converges to the subgame-perfect equilibrium of the principal-agent game. A deep RL implementation allows us to apply our method to very large MDPs with unknown transition dynamics. We extend our approach to multiple agents, and demonstrate its relevance to resolving a canonical sequential social dilemma with minimal intervention to agent rewards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1