E. Abdeltwab, A. Atta, Nuha Al-Harbi, M. M. Abdelhamied
{"title":"用于储能应用的聚合物纳米复合材料的合成、表征和介电性能","authors":"E. Abdeltwab, A. Atta, Nuha Al-Harbi, M. M. Abdelhamied","doi":"10.1007/s13233-024-00298-y","DOIUrl":null,"url":null,"abstract":"<p>In this project, the oxidative chemical polymerization method is used to prepare polymer composite that consisting of polypyrrole polymer (PPy) and iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs). Then deposited this blend (PPy/Fe<sub>2</sub>O<sub>3</sub>) onto the PET substrate to creating flexible nanocomposite PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>). Analyzing the samples using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) proves that the composite was effectively formed. With varying Fe<sub>2</sub>O<sub>3</sub> ratios, the dielectric parameters of PET polymer and PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>) composite have been documented at frequencies of 40–5.6 MHz. The surface properties were significantly enhanced by irradiation. The surface free energy increases from 41.36 mJ/m<sup>2</sup> to 66.23 mJ/m<sup>2</sup> and water contact angle reduces from 58.36° for PET to 39.25°. The results demonstrated that the composite surface characteristics were enhanced as the concentration of Fe<sub>2</sub>O<sub>3</sub> changed. The obtained data showed that the fabricated samples have better properties than the PET films that can be utilized in many applications as capacitors and storage devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p><b>a</b> SEM of PET, <b>b</b> SEM of PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>c</b> SEM of PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>d</b> contact angle with ratios\nof Fe<sub>2</sub>O<sub>3</sub> and <b>e</b> surface free energy with ratios of Fe<sub>2</sub>O<sub>3</sub></p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization and dielectric properties of polymer nanocomposites for energy storage applications\",\"authors\":\"E. Abdeltwab, A. Atta, Nuha Al-Harbi, M. M. Abdelhamied\",\"doi\":\"10.1007/s13233-024-00298-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this project, the oxidative chemical polymerization method is used to prepare polymer composite that consisting of polypyrrole polymer (PPy) and iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs). Then deposited this blend (PPy/Fe<sub>2</sub>O<sub>3</sub>) onto the PET substrate to creating flexible nanocomposite PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>). Analyzing the samples using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) proves that the composite was effectively formed. With varying Fe<sub>2</sub>O<sub>3</sub> ratios, the dielectric parameters of PET polymer and PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>) composite have been documented at frequencies of 40–5.6 MHz. The surface properties were significantly enhanced by irradiation. The surface free energy increases from 41.36 mJ/m<sup>2</sup> to 66.23 mJ/m<sup>2</sup> and water contact angle reduces from 58.36° for PET to 39.25°. The results demonstrated that the composite surface characteristics were enhanced as the concentration of Fe<sub>2</sub>O<sub>3</sub> changed. The obtained data showed that the fabricated samples have better properties than the PET films that can be utilized in many applications as capacitors and storage devices.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><p><b>a</b> SEM of PET, <b>b</b> SEM of PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>c</b> SEM of PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>d</b> contact angle with ratios\\nof Fe<sub>2</sub>O<sub>3</sub> and <b>e</b> surface free energy with ratios of Fe<sub>2</sub>O<sub>3</sub></p>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13233-024-00298-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13233-024-00298-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本项目采用氧化化学聚合法制备由聚吡咯聚合物(PPy)和氧化铁纳米颗粒(Fe2O3NPs)组成的聚合物复合材料。然后将这种混合物(PPy/Fe2O3)沉积到 PET 基质上,制成柔性纳米复合 PET/(PPy/Fe2O3)。利用 X 射线衍射 (XRD) 和傅立叶变换红外光谱 (FTIR) 分析样品,证明复合材料已有效形成。随着 Fe2O3 比例的变化,记录了 PET 聚合物和 PET/(PPy/Fe2O3)复合材料在 40-5.6 MHz 频率下的介电参数。辐照显著增强了表面特性。表面自由能从 41.36 mJ/m2 增加到 66.23 mJ/m2,水接触角从 PET 的 58.36° 减小到 39.25°。结果表明,随着 Fe2O3 浓度的变化,复合材料的表面特性得到了增强。所获得的数据表明,制备的样品比 PET 薄膜具有更好的性能,可以作为电容器和存储设备广泛应用。
Synthesis, characterization and dielectric properties of polymer nanocomposites for energy storage applications
In this project, the oxidative chemical polymerization method is used to prepare polymer composite that consisting of polypyrrole polymer (PPy) and iron oxide nanoparticles (Fe2O3NPs). Then deposited this blend (PPy/Fe2O3) onto the PET substrate to creating flexible nanocomposite PET/(PPy/Fe2O3). Analyzing the samples using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) proves that the composite was effectively formed. With varying Fe2O3 ratios, the dielectric parameters of PET polymer and PET/(PPy/Fe2O3) composite have been documented at frequencies of 40–5.6 MHz. The surface properties were significantly enhanced by irradiation. The surface free energy increases from 41.36 mJ/m2 to 66.23 mJ/m2 and water contact angle reduces from 58.36° for PET to 39.25°. The results demonstrated that the composite surface characteristics were enhanced as the concentration of Fe2O3 changed. The obtained data showed that the fabricated samples have better properties than the PET films that can be utilized in many applications as capacitors and storage devices.
Graphical abstract
a SEM of PET, b SEM of PPy/Fe2O3, c SEM of PET/(PPy/Fe2O3, d contact angle with ratios
of Fe2O3 and e surface free energy with ratios of Fe2O3
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.