减少多臂结构增塑剂从压敏胶膜中的迁移

IF 2.8 4区 工程技术 Q2 POLYMER SCIENCE Macromolecular Research Pub Date : 2024-07-23 DOI:10.1007/s13233-024-00297-z
Misol Kim, Yun Jung Jang, Yeonhee Lee, Chaelim Mun, Hanki Cho, Hyunjee Yoo, Jaseung Koo
{"title":"减少多臂结构增塑剂从压敏胶膜中的迁移","authors":"Misol Kim, Yun Jung Jang, Yeonhee Lee, Chaelim Mun, Hanki Cho, Hyunjee Yoo, Jaseung Koo","doi":"10.1007/s13233-024-00297-z","DOIUrl":null,"url":null,"abstract":"<p>Temporary protective film (TPF) is used as a surface protection for the encapsulation layer during cell cutting and laser lift-off in the manufacturing process of an organic light-emitting diode. TPFs should satisfy the following requirements: good wettability on the surface during the protection step, low peel strength, and clear debonding properties during the removal step. Herein, we used multi-arm-structured trimethylolpropane ethoxylate (TPEG) and linear-structured poly(ethylene glycol) 200 (PEG200) plasticizers to attain these requirements for a polyurethane-based a pressure-sensitive adhesive (PSA). The PSA films with TPEG successfully satisfied the aforementioned requirements. The PSA films with plasticizers exhibited similar wettability and polar surface energy with those of the substrate, thereby demonstrating an interface energy with the substrate of approximately zero. Additionally, the 180° peel strength test showed that the peel strength of the PSA with TPEG was lower than that with PEG200. The observation coincides with small-amplitude oscillatory shear test results obtained via rotational rheology measurements. Furthermore, debonding properties were characterized using time-of-flight secondary ion mass spectrometry (TOF–SIMS) of the adherend surfaces after peeling off the TPFs. The structural properties of TPEG affected migration to a lesser extent than those of PEG200. This is in good agreement with the surface free energies of the adherend surfaces after removing the TPFs. The proposed design strategy can be applied in electronic industry where surface protection using ultra-peelable adhesive films is required.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"41 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced migration of multi-arm structured plasticizer from pressure-sensitive adhesive films\",\"authors\":\"Misol Kim, Yun Jung Jang, Yeonhee Lee, Chaelim Mun, Hanki Cho, Hyunjee Yoo, Jaseung Koo\",\"doi\":\"10.1007/s13233-024-00297-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Temporary protective film (TPF) is used as a surface protection for the encapsulation layer during cell cutting and laser lift-off in the manufacturing process of an organic light-emitting diode. TPFs should satisfy the following requirements: good wettability on the surface during the protection step, low peel strength, and clear debonding properties during the removal step. Herein, we used multi-arm-structured trimethylolpropane ethoxylate (TPEG) and linear-structured poly(ethylene glycol) 200 (PEG200) plasticizers to attain these requirements for a polyurethane-based a pressure-sensitive adhesive (PSA). The PSA films with TPEG successfully satisfied the aforementioned requirements. The PSA films with plasticizers exhibited similar wettability and polar surface energy with those of the substrate, thereby demonstrating an interface energy with the substrate of approximately zero. Additionally, the 180° peel strength test showed that the peel strength of the PSA with TPEG was lower than that with PEG200. The observation coincides with small-amplitude oscillatory shear test results obtained via rotational rheology measurements. Furthermore, debonding properties were characterized using time-of-flight secondary ion mass spectrometry (TOF–SIMS) of the adherend surfaces after peeling off the TPFs. The structural properties of TPEG affected migration to a lesser extent than those of PEG200. This is in good agreement with the surface free energies of the adherend surfaces after removing the TPFs. The proposed design strategy can be applied in electronic industry where surface protection using ultra-peelable adhesive films is required.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13233-024-00297-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13233-024-00297-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在有机发光二极管的制造过程中,临时保护膜(TPF)可在电池切割和激光剥离时用作封装层的表面保护。临时保护膜应满足以下要求:在保护步骤中具有良好的表面润湿性、较低的剥离强度以及在剥离步骤中具有清晰的剥离特性。在此,我们使用多臂结构的三羟甲基丙烷乙氧基化物(TPEG)和线性结构的聚(乙二醇)200(PEG200)增塑剂来满足聚氨酯基压敏胶(PSA)的上述要求。含有 TPEG 的 PSA 薄膜成功地满足了上述要求。含增塑剂的 PSA 薄膜表现出与基材相似的润湿性和极性表面能,因此与基材的界面能约为零。此外,180° 剥离强度测试表明,含 TPEG 的 PSA 的剥离强度低于含 PEG200 的 PSA。这一观察结果与通过旋转流变测量获得的小振幅振荡剪切试验结果相吻合。此外,还利用飞行时间二次离子质谱法(TOF-SIMS)对剥离 TPF 后的粘附表面进行了脱粘特性表征。与 PEG200 相比,TPEG 的结构特性对迁移的影响较小。这与去除热塑性硫化弹性体后粘附表面的表面自由能十分吻合。所提出的设计策略可用于需要使用超强可剥离粘合剂薄膜进行表面保护的电子工业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced migration of multi-arm structured plasticizer from pressure-sensitive adhesive films

Temporary protective film (TPF) is used as a surface protection for the encapsulation layer during cell cutting and laser lift-off in the manufacturing process of an organic light-emitting diode. TPFs should satisfy the following requirements: good wettability on the surface during the protection step, low peel strength, and clear debonding properties during the removal step. Herein, we used multi-arm-structured trimethylolpropane ethoxylate (TPEG) and linear-structured poly(ethylene glycol) 200 (PEG200) plasticizers to attain these requirements for a polyurethane-based a pressure-sensitive adhesive (PSA). The PSA films with TPEG successfully satisfied the aforementioned requirements. The PSA films with plasticizers exhibited similar wettability and polar surface energy with those of the substrate, thereby demonstrating an interface energy with the substrate of approximately zero. Additionally, the 180° peel strength test showed that the peel strength of the PSA with TPEG was lower than that with PEG200. The observation coincides with small-amplitude oscillatory shear test results obtained via rotational rheology measurements. Furthermore, debonding properties were characterized using time-of-flight secondary ion mass spectrometry (TOF–SIMS) of the adherend surfaces after peeling off the TPFs. The structural properties of TPEG affected migration to a lesser extent than those of PEG200. This is in good agreement with the surface free energies of the adherend surfaces after removing the TPFs. The proposed design strategy can be applied in electronic industry where surface protection using ultra-peelable adhesive films is required.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
期刊最新文献
Biodegradable and antioxidant lignin-adsorbed polylactic acid microparticles for eco-friendly primary microparticles Discarded bamboo chopstick cellulose-based fibers for bio-based polybutylene succinate composite reinforcement Recent achievements in conjugated polymer-based gas sensors by side-chain engineering Antimicrobial polymer coatings on surfaces: preparation and activity Polymer-induced surface wrinkling and imine polymer-based doping of sol–gel zinc oxide in electrolyte-gated transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1