Kaige Ding , Zhinan Zhao , Siyuan Ma , Yanqing Qiu , Tingting Lang , Ting Chen
{"title":"利用主成分分析与深度学习网络加速太赫兹元表面设计优化","authors":"Kaige Ding , Zhinan Zhao , Siyuan Ma , Yanqing Qiu , Tingting Lang , Ting Chen","doi":"10.1016/j.phycom.2024.102452","DOIUrl":null,"url":null,"abstract":"<div><p>Metamaterials are a class of artificial materials that have exceptional physical properties that do not exist in nature. They are widely used in various fields, such as electromagnetics, optics, and acoustics. However, designing metamaterials can be a challenging and time-consuming task. Traditional methods rely on simulations and trial-and-error, which are inefficient and often require significant computational resources. Recently, deep learning has emerged as a promising tool to design metamaterials. Deep learning involves training neural networks to learn complex patterns and relationships in data, which can be used to predict the behavior of metamaterials under different conditions. This paper proposes a neural network that maps geometric parameters to frequency domain responses for optimized design. The network utilizes PCA (Principal Component Analysis) to reduce the training time by approximately 5%, and this combination method is far superior to similar algorithms in terms of prediction accuracy and generalization ability. Experimental results demonstrate that the designed network model can be used for optimized design, achieving a remarkably low RMSE (Root Mean Square Error) of 0.0408 and a prediction accuracy of 97.64% in the reverse network, outperforming similar articles. The proposed network model improves the design efficiency of metamaterials, providing a more efficient and effective approach for designing these metamaterials.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"66 ","pages":"Article 102452"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating optimization of terahertz metasurface design using principal component analysis in conjunction with deep learning networks\",\"authors\":\"Kaige Ding , Zhinan Zhao , Siyuan Ma , Yanqing Qiu , Tingting Lang , Ting Chen\",\"doi\":\"10.1016/j.phycom.2024.102452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metamaterials are a class of artificial materials that have exceptional physical properties that do not exist in nature. They are widely used in various fields, such as electromagnetics, optics, and acoustics. However, designing metamaterials can be a challenging and time-consuming task. Traditional methods rely on simulations and trial-and-error, which are inefficient and often require significant computational resources. Recently, deep learning has emerged as a promising tool to design metamaterials. Deep learning involves training neural networks to learn complex patterns and relationships in data, which can be used to predict the behavior of metamaterials under different conditions. This paper proposes a neural network that maps geometric parameters to frequency domain responses for optimized design. The network utilizes PCA (Principal Component Analysis) to reduce the training time by approximately 5%, and this combination method is far superior to similar algorithms in terms of prediction accuracy and generalization ability. Experimental results demonstrate that the designed network model can be used for optimized design, achieving a remarkably low RMSE (Root Mean Square Error) of 0.0408 and a prediction accuracy of 97.64% in the reverse network, outperforming similar articles. The proposed network model improves the design efficiency of metamaterials, providing a more efficient and effective approach for designing these metamaterials.</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"66 \",\"pages\":\"Article 102452\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724001708\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724001708","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Accelerating optimization of terahertz metasurface design using principal component analysis in conjunction with deep learning networks
Metamaterials are a class of artificial materials that have exceptional physical properties that do not exist in nature. They are widely used in various fields, such as electromagnetics, optics, and acoustics. However, designing metamaterials can be a challenging and time-consuming task. Traditional methods rely on simulations and trial-and-error, which are inefficient and often require significant computational resources. Recently, deep learning has emerged as a promising tool to design metamaterials. Deep learning involves training neural networks to learn complex patterns and relationships in data, which can be used to predict the behavior of metamaterials under different conditions. This paper proposes a neural network that maps geometric parameters to frequency domain responses for optimized design. The network utilizes PCA (Principal Component Analysis) to reduce the training time by approximately 5%, and this combination method is far superior to similar algorithms in terms of prediction accuracy and generalization ability. Experimental results demonstrate that the designed network model can be used for optimized design, achieving a remarkably low RMSE (Root Mean Square Error) of 0.0408 and a prediction accuracy of 97.64% in the reverse network, outperforming similar articles. The proposed network model improves the design efficiency of metamaterials, providing a more efficient and effective approach for designing these metamaterials.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.