{"title":"关于河网生物地球化学功能的比例关系","authors":"Enrico Bertuzzo","doi":"10.1002/eco.2691","DOIUrl":null,"url":null,"abstract":"River networks play a fundamental biogeochemical role in the Earth system by transporting and processing materials from terrestrial to ocean ecosystems. The cumulative biogeochemical function of a watershed of area can broadly be referred to as the total processing rate of material performed by its river network. An important recent research, conducted through network simulations, has revealed that the biogeochemical function of rivers can scale superlinearly with the area under certain scenarios. This finding has significant implications for the role of river networks in regional and global biogeochemical cycles. Here, we demonstrate how such scaling can be derived analytically by combining the power law distribution of drainage area, the universal fractal signature of river networks and the scaling of channel hydraulic geometry, utilising the theory of finite‐size scaling. The results enable the discrimination between linear and superlinear behaviours, as well as the calculation of the exact exponent based on parameters that define how the biogeochemical function and the river width change with river drainage area. Furthermore, we investigate the difference between the scaling of the biogeochemical function with the area of the watershed and with the area of a region drained by multiple river networks, emphasising the implications for upscaling efforts.","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"52 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the scaling of river network biogeochemical function\",\"authors\":\"Enrico Bertuzzo\",\"doi\":\"10.1002/eco.2691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"River networks play a fundamental biogeochemical role in the Earth system by transporting and processing materials from terrestrial to ocean ecosystems. The cumulative biogeochemical function of a watershed of area can broadly be referred to as the total processing rate of material performed by its river network. An important recent research, conducted through network simulations, has revealed that the biogeochemical function of rivers can scale superlinearly with the area under certain scenarios. This finding has significant implications for the role of river networks in regional and global biogeochemical cycles. Here, we demonstrate how such scaling can be derived analytically by combining the power law distribution of drainage area, the universal fractal signature of river networks and the scaling of channel hydraulic geometry, utilising the theory of finite‐size scaling. The results enable the discrimination between linear and superlinear behaviours, as well as the calculation of the exact exponent based on parameters that define how the biogeochemical function and the river width change with river drainage area. Furthermore, we investigate the difference between the scaling of the biogeochemical function with the area of the watershed and with the area of a region drained by multiple river networks, emphasising the implications for upscaling efforts.\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/eco.2691\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/eco.2691","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
On the scaling of river network biogeochemical function
River networks play a fundamental biogeochemical role in the Earth system by transporting and processing materials from terrestrial to ocean ecosystems. The cumulative biogeochemical function of a watershed of area can broadly be referred to as the total processing rate of material performed by its river network. An important recent research, conducted through network simulations, has revealed that the biogeochemical function of rivers can scale superlinearly with the area under certain scenarios. This finding has significant implications for the role of river networks in regional and global biogeochemical cycles. Here, we demonstrate how such scaling can be derived analytically by combining the power law distribution of drainage area, the universal fractal signature of river networks and the scaling of channel hydraulic geometry, utilising the theory of finite‐size scaling. The results enable the discrimination between linear and superlinear behaviours, as well as the calculation of the exact exponent based on parameters that define how the biogeochemical function and the river width change with river drainage area. Furthermore, we investigate the difference between the scaling of the biogeochemical function with the area of the watershed and with the area of a region drained by multiple river networks, emphasising the implications for upscaling efforts.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.