基于运动预测模型的水下无线传感器网络节点调整方案

IF 2.7 3区 地球科学 Q1 ENGINEERING, MARINE Journal of Marine Science and Engineering Pub Date : 2024-07-25 DOI:10.3390/jmse12081256
Han Zheng, Haonan Chen, Anqi Du, Meijiao Yang, Zhigang Jin, Ye Chen
{"title":"基于运动预测模型的水下无线传感器网络节点调整方案","authors":"Han Zheng, Haonan Chen, Anqi Du, Meijiao Yang, Zhigang Jin, Ye Chen","doi":"10.3390/jmse12081256","DOIUrl":null,"url":null,"abstract":"With the wide application of Underwater Wireless Sensor Networks (UWSNs) in various fields, more and more attention has been paid to deploying and adjusting network nodes. A UWSN is composed of nodes with limited mobility. Drift movement leads to the network structure’s destruction, communication performance decline, and node life-shortening. Therefore, a Node Adjustment Scheme based on Motion Prediction (NAS-MP) is proposed, which integrates the layered model of the ocean current’s uneven depth, the layered ocean current prediction model based on convolutional neural network (CNN)–transformer, the node trajectory prediction model, and the periodic depth adjustment model based on the Seagull Optimization Algorithm (SOA), to improve the network coverage and connectivity. Firstly, the error threshold of the current velocity and direction in the layer was introduced to divide the depth levels, and the regional current data model was constructed according to the measured data. Secondly, the CNN–transformer hybrid network was used to predict stratified ocean currents. Then, the prediction data of layered ocean currents was applied to the nodes’ drift model, and the nodes’ motion trajectory prediction was obtained. Finally, based on the trajectory prediction of nodes, the SOA obtained the optimal depth of nodes to optimize the coverage and connectivity of the UWSN. Experimental simulation results show that the performance of the proposed scheme is superior.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Node Adjustment Scheme of Underwater Wireless Sensor Networks Based on Motion Prediction Model\",\"authors\":\"Han Zheng, Haonan Chen, Anqi Du, Meijiao Yang, Zhigang Jin, Ye Chen\",\"doi\":\"10.3390/jmse12081256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of Underwater Wireless Sensor Networks (UWSNs) in various fields, more and more attention has been paid to deploying and adjusting network nodes. A UWSN is composed of nodes with limited mobility. Drift movement leads to the network structure’s destruction, communication performance decline, and node life-shortening. Therefore, a Node Adjustment Scheme based on Motion Prediction (NAS-MP) is proposed, which integrates the layered model of the ocean current’s uneven depth, the layered ocean current prediction model based on convolutional neural network (CNN)–transformer, the node trajectory prediction model, and the periodic depth adjustment model based on the Seagull Optimization Algorithm (SOA), to improve the network coverage and connectivity. Firstly, the error threshold of the current velocity and direction in the layer was introduced to divide the depth levels, and the regional current data model was constructed according to the measured data. Secondly, the CNN–transformer hybrid network was used to predict stratified ocean currents. Then, the prediction data of layered ocean currents was applied to the nodes’ drift model, and the nodes’ motion trajectory prediction was obtained. Finally, based on the trajectory prediction of nodes, the SOA obtained the optimal depth of nodes to optimize the coverage and connectivity of the UWSN. Experimental simulation results show that the performance of the proposed scheme is superior.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12081256\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081256","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

随着水下无线传感器网络(UWSN)在各个领域的广泛应用,人们越来越关注网络节点的部署和调整。水下无线传感器网络由具有有限移动性的节点组成。漂移会导致网络结构破坏、通信性能下降和节点寿命缩短。因此,本文提出了一种基于运动预测的节点调整方案(NAS-MP),将洋流不均匀深度的分层模型、基于卷积神经网络(CNN)-变换器的分层洋流预测模型、节点轨迹预测模型和基于海鸥优化算法(SOA)的周期性深度调整模型整合在一起,以提高网络的覆盖率和连通性。首先,引入层中水流速度和方向的误差阈值来划分深度等级,并根据实测数据构建区域水流数据模型。其次,利用 CNN-变换器混合网络预测分层洋流。然后,将分层洋流预测数据应用于节点漂移模型,得到节点运动轨迹预测结果。最后,根据节点的运动轨迹预测,SOA 获得了最优节点深度,从而优化了 UWSN 的覆盖范围和连通性。实验仿真结果表明,所提方案性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Node Adjustment Scheme of Underwater Wireless Sensor Networks Based on Motion Prediction Model
With the wide application of Underwater Wireless Sensor Networks (UWSNs) in various fields, more and more attention has been paid to deploying and adjusting network nodes. A UWSN is composed of nodes with limited mobility. Drift movement leads to the network structure’s destruction, communication performance decline, and node life-shortening. Therefore, a Node Adjustment Scheme based on Motion Prediction (NAS-MP) is proposed, which integrates the layered model of the ocean current’s uneven depth, the layered ocean current prediction model based on convolutional neural network (CNN)–transformer, the node trajectory prediction model, and the periodic depth adjustment model based on the Seagull Optimization Algorithm (SOA), to improve the network coverage and connectivity. Firstly, the error threshold of the current velocity and direction in the layer was introduced to divide the depth levels, and the regional current data model was constructed according to the measured data. Secondly, the CNN–transformer hybrid network was used to predict stratified ocean currents. Then, the prediction data of layered ocean currents was applied to the nodes’ drift model, and the nodes’ motion trajectory prediction was obtained. Finally, based on the trajectory prediction of nodes, the SOA obtained the optimal depth of nodes to optimize the coverage and connectivity of the UWSN. Experimental simulation results show that the performance of the proposed scheme is superior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Science and Engineering
Journal of Marine Science and Engineering Engineering-Ocean Engineering
CiteScore
4.40
自引率
20.70%
发文量
1640
审稿时长
18.09 days
期刊介绍: Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Study on the Turning Characteristics and Influencing Factors of the Unmanned Sailboat Ship Trajectory Planning and Optimization via Ensemble Hybrid A* and Multi-Target Point Artificial Potential Field Model The Volcanic Rocks and Hydrocarbon Accumulation in the Offshore Indus Basin, Pakistan Opportunity-Maintenance-Based Scheduling Optimization for Ship-Loading Operation Systems in Coal Export Terminals FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1