具有环境耐受性的导电有机水凝胶,可实现卓越的电磁干扰屏蔽和人体运动检测功能

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-07-23 DOI:10.1016/j.xcrp.2024.102109
{"title":"具有环境耐受性的导电有机水凝胶,可实现卓越的电磁干扰屏蔽和人体运动检测功能","authors":"","doi":"10.1016/j.xcrp.2024.102109","DOIUrl":null,"url":null,"abstract":"<p>Flexible wearable devices require conductive hydrogels that can withstand extreme conditions. Yet, most strategies for improving environmental tolerance compromise other properties, including mechanical modulus and electromagnetic interference (EMI) shielding. Herein, we design polyvinyl alcohol/polypyrrole double-network organohydrogels with tunable EMI shielding and mechanical properties by introducing specific ions and glycerol. The synergistic effect of high-concentration “salting-in” ions and glycerol/water systems enables 3 M AlCl<sub>3</sub>-treated organohydrogels to exhibit exceptional environmental tolerance. These gels display excellent shielding performance above 40 dB and enhanced modulus-like human skin. Glycerol restores the mechanical properties deteriorated by “salting-in” ions, and AlCl<sub>3</sub> promotes ion migration to improve EMI shielding. Additionally, these organohydrogels can also serve as strain sensors, monitoring human motions and maintaining stable shielding (&gt;25 dB) even after subzero treatment or long-term use. Overall, this work offers a generalizable strategy for fabricating multifunctional organohydrogels, paving the way for advancements in gel-based flexible wearable devices.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmentally tolerant conductive organohydrogel toward superior electromagnetic interference shielding and human motion detection\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flexible wearable devices require conductive hydrogels that can withstand extreme conditions. Yet, most strategies for improving environmental tolerance compromise other properties, including mechanical modulus and electromagnetic interference (EMI) shielding. Herein, we design polyvinyl alcohol/polypyrrole double-network organohydrogels with tunable EMI shielding and mechanical properties by introducing specific ions and glycerol. The synergistic effect of high-concentration “salting-in” ions and glycerol/water systems enables 3 M AlCl<sub>3</sub>-treated organohydrogels to exhibit exceptional environmental tolerance. These gels display excellent shielding performance above 40 dB and enhanced modulus-like human skin. Glycerol restores the mechanical properties deteriorated by “salting-in” ions, and AlCl<sub>3</sub> promotes ion migration to improve EMI shielding. Additionally, these organohydrogels can also serve as strain sensors, monitoring human motions and maintaining stable shielding (&gt;25 dB) even after subzero treatment or long-term use. Overall, this work offers a generalizable strategy for fabricating multifunctional organohydrogels, paving the way for advancements in gel-based flexible wearable devices.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102109\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102109","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性可穿戴设备需要能够承受极端条件的导电水凝胶。然而,大多数提高环境耐受性的策略都会损害其他性能,包括机械模量和电磁干扰(EMI)屏蔽。在此,我们通过引入特定离子和甘油,设计出具有可调电磁干扰屏蔽和机械性能的聚乙烯醇/聚吡咯双网有机水凝胶。高浓度 "盐化 "离子和甘油/水体系的协同作用使 3 M AlCl3 处理过的有机水凝胶表现出卓越的环境耐受性。这些凝胶显示出 40 dB 以上的出色屏蔽性能,模量增强后与人体皮肤相似。甘油恢复了因离子 "盐析 "而恶化的机械性能,而 AlCl3 则促进了离子迁移,从而提高了 EMI 屏蔽性能。此外,这些有机水凝胶还可用作应变传感器,监测人体运动,并在经过零度以下处理或长期使用后仍能保持稳定的屏蔽(25 分贝)。总之,这项工作为制造多功能有机水凝胶提供了一种可推广的策略,为基于凝胶的柔性可穿戴设备的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmentally tolerant conductive organohydrogel toward superior electromagnetic interference shielding and human motion detection

Flexible wearable devices require conductive hydrogels that can withstand extreme conditions. Yet, most strategies for improving environmental tolerance compromise other properties, including mechanical modulus and electromagnetic interference (EMI) shielding. Herein, we design polyvinyl alcohol/polypyrrole double-network organohydrogels with tunable EMI shielding and mechanical properties by introducing specific ions and glycerol. The synergistic effect of high-concentration “salting-in” ions and glycerol/water systems enables 3 M AlCl3-treated organohydrogels to exhibit exceptional environmental tolerance. These gels display excellent shielding performance above 40 dB and enhanced modulus-like human skin. Glycerol restores the mechanical properties deteriorated by “salting-in” ions, and AlCl3 promotes ion migration to improve EMI shielding. Additionally, these organohydrogels can also serve as strain sensors, monitoring human motions and maintaining stable shielding (>25 dB) even after subzero treatment or long-term use. Overall, this work offers a generalizable strategy for fabricating multifunctional organohydrogels, paving the way for advancements in gel-based flexible wearable devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1