纵向主模型估算

Robert Zielinski, Kun Meng, Ani Eloyan
{"title":"纵向主模型估算","authors":"Robert Zielinski, Kun Meng, Ani Eloyan","doi":"arxiv-2407.17450","DOIUrl":null,"url":null,"abstract":"Longitudinal magnetic resonance imaging data is used to model trajectories of\nchange in brain regions of interest to identify areas susceptible to atrophy in\nthose with neurodegenerative conditions like Alzheimer's disease. Most methods\nfor extracting brain regions are applied to scans from study participants\nindependently, resulting in wide variability in shape and volume estimates of\nthese regions over time in longitudinal studies. To address this problem, we\npropose a longitudinal principal manifold estimation method, which seeks to\nrecover smooth, longitudinally meaningful manifold estimates of shapes over\ntime. The proposed approach uses a smoothing spline to smooth over the\ncoefficients of principal manifold embedding functions estimated at each time\npoint. This mitigates the effects of random disturbances to the manifold\nbetween time points. Additionally, we propose a novel data augmentation\napproach to enable principal manifold estimation on self-intersecting\nmanifolds. Simulation studies demonstrate performance improvements over naive\napplications of principal manifold estimation and principal curve/surface\nmethods. The proposed method improves the estimation of surfaces of\nhippocampuses and thalamuses using data from participants of the Alzheimer's\nDisease Neuroimaging Initiative. An analysis of magnetic resonance imaging data\nfrom 236 individuals shows the advantages of our proposed methods that leverage\nregional longitudinal trends for segmentation.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Principal Manifold Estimation\",\"authors\":\"Robert Zielinski, Kun Meng, Ani Eloyan\",\"doi\":\"arxiv-2407.17450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Longitudinal magnetic resonance imaging data is used to model trajectories of\\nchange in brain regions of interest to identify areas susceptible to atrophy in\\nthose with neurodegenerative conditions like Alzheimer's disease. Most methods\\nfor extracting brain regions are applied to scans from study participants\\nindependently, resulting in wide variability in shape and volume estimates of\\nthese regions over time in longitudinal studies. To address this problem, we\\npropose a longitudinal principal manifold estimation method, which seeks to\\nrecover smooth, longitudinally meaningful manifold estimates of shapes over\\ntime. The proposed approach uses a smoothing spline to smooth over the\\ncoefficients of principal manifold embedding functions estimated at each time\\npoint. This mitigates the effects of random disturbances to the manifold\\nbetween time points. Additionally, we propose a novel data augmentation\\napproach to enable principal manifold estimation on self-intersecting\\nmanifolds. Simulation studies demonstrate performance improvements over naive\\napplications of principal manifold estimation and principal curve/surface\\nmethods. The proposed method improves the estimation of surfaces of\\nhippocampuses and thalamuses using data from participants of the Alzheimer's\\nDisease Neuroimaging Initiative. An analysis of magnetic resonance imaging data\\nfrom 236 individuals shows the advantages of our proposed methods that leverage\\nregional longitudinal trends for segmentation.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纵向磁共振成像数据被用来模拟大脑相关区域的变化轨迹,以确定神经退行性疾病(如阿尔茨海默氏症)患者的易萎缩区域。大多数提取大脑区域的方法都是独立应用于研究参与者的扫描结果,因此在纵向研究中,这些区域的形状和体积估计值随时间的推移而变化很大。为了解决这个问题,我们提出了一种纵向主流形估计方法,该方法旨在恢复平滑的、有纵向意义的形状流形估计值。我们提出的方法使用平滑样条曲线来平滑每个时间点估计的主流形嵌入函数的系数。这可以减轻时间点之间流形随机干扰的影响。此外,我们还提出了一种新颖的数据增强方法,以便在自相交流形上进行主流形估计。仿真研究表明,与主流形估计和主曲线/主曲面方法的简单应用相比,该方法的性能有所提高。利用阿尔茨海默病神经成像计划参与者的数据,所提出的方法改进了对海马和丘脑表面的估计。对来自 236 人的磁共振成像数据的分析表明了我们提出的方法的优势,即利用区域纵向趋势进行分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Principal Manifold Estimation
Longitudinal magnetic resonance imaging data is used to model trajectories of change in brain regions of interest to identify areas susceptible to atrophy in those with neurodegenerative conditions like Alzheimer's disease. Most methods for extracting brain regions are applied to scans from study participants independently, resulting in wide variability in shape and volume estimates of these regions over time in longitudinal studies. To address this problem, we propose a longitudinal principal manifold estimation method, which seeks to recover smooth, longitudinally meaningful manifold estimates of shapes over time. The proposed approach uses a smoothing spline to smooth over the coefficients of principal manifold embedding functions estimated at each time point. This mitigates the effects of random disturbances to the manifold between time points. Additionally, we propose a novel data augmentation approach to enable principal manifold estimation on self-intersecting manifolds. Simulation studies demonstrate performance improvements over naive applications of principal manifold estimation and principal curve/surface methods. The proposed method improves the estimation of surfaces of hippocampuses and thalamuses using data from participants of the Alzheimer's Disease Neuroimaging Initiative. An analysis of magnetic resonance imaging data from 236 individuals shows the advantages of our proposed methods that leverage regional longitudinal trends for segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1