采用混合场板的高性能、低 HCI 劣化 LDMOS 器件

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-25 DOI:10.1109/JEDS.2024.3433442
Shaoxin Yu;Rongsheng Chen;Weiheng Shao;Weiming Yu;Xiaoyan Zhao;Zheng Chen;Weizhong Shan;Jenhao Cheng
{"title":"采用混合场板的高性能、低 HCI 劣化 LDMOS 器件","authors":"Shaoxin Yu;Rongsheng Chen;Weiheng Shao;Weiming Yu;Xiaoyan Zhao;Zheng Chen;Weizhong Shan;Jenhao Cheng","doi":"10.1109/JEDS.2024.3433442","DOIUrl":null,"url":null,"abstract":"In this paper, a high-performance and low-HCI (Hot carrier injection) degradation LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. It consists of an additional mini LOCOS (Local oxidation of silicon) field plate combined with a mini STI (Shallow trench isolation) field plate without an additional complex fabrication process. A series of devices have been fabricated, and the field plate corner profile is optimized. The proposed hybrid FP(Field plate) can effectively reduce the electric field peak, and the BV (Breakdown voltage) achieves as high as 78.9V while the \n<inline-formula> <tex-math>${R}_{{on}{,}{sp}}$ </tex-math></inline-formula>\n (Specific on-resistance) is as low as \n<inline-formula> <tex-math>$69.1~{{\\mathrm { m}}\\Omega \\cdot }{mm}^{2}$ </tex-math></inline-formula>\n, which is 65.8% improved compared with conventional transistors. Meanwhile, the hybrid FP device owns much better HCI (Hot carrier injection) degradation performance on \n<inline-formula> <tex-math>${R}_{on,sp}$ </tex-math></inline-formula>\n, threshold voltage \n<inline-formula> <tex-math>${V}_{T}$ </tex-math></inline-formula>\n, and gate-drain capacitance \n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\n. The degradation of \n<inline-formula> <tex-math>${R}_{{on}{,}{sp}}$ </tex-math></inline-formula>\n is only 8.6% under \n<inline-formula> <tex-math>${I}_{d}$ </tex-math></inline-formula>\n mode stress while it is as high as 15.8% for the conventional devices. At on-state, \n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\n degradation is only 9.1% while it is nearly 59.9% in the traditional device. At high voltage application regions, the device exhibits nearly 0% \n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\n degradation while it is as high as 43.8% in the traditional device. The results indicate the device’s robustness in both DC (Direct current) applications and RF (Radio frequency) applications.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609835","citationCount":"0","resultStr":"{\"title\":\"A High-Performance and Low HCI Degradation LDMOS Device With a Hybrid Field Plate\",\"authors\":\"Shaoxin Yu;Rongsheng Chen;Weiheng Shao;Weiming Yu;Xiaoyan Zhao;Zheng Chen;Weizhong Shan;Jenhao Cheng\",\"doi\":\"10.1109/JEDS.2024.3433442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a high-performance and low-HCI (Hot carrier injection) degradation LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. It consists of an additional mini LOCOS (Local oxidation of silicon) field plate combined with a mini STI (Shallow trench isolation) field plate without an additional complex fabrication process. A series of devices have been fabricated, and the field plate corner profile is optimized. The proposed hybrid FP(Field plate) can effectively reduce the electric field peak, and the BV (Breakdown voltage) achieves as high as 78.9V while the \\n<inline-formula> <tex-math>${R}_{{on}{,}{sp}}$ </tex-math></inline-formula>\\n (Specific on-resistance) is as low as \\n<inline-formula> <tex-math>$69.1~{{\\\\mathrm { m}}\\\\Omega \\\\cdot }{mm}^{2}$ </tex-math></inline-formula>\\n, which is 65.8% improved compared with conventional transistors. Meanwhile, the hybrid FP device owns much better HCI (Hot carrier injection) degradation performance on \\n<inline-formula> <tex-math>${R}_{on,sp}$ </tex-math></inline-formula>\\n, threshold voltage \\n<inline-formula> <tex-math>${V}_{T}$ </tex-math></inline-formula>\\n, and gate-drain capacitance \\n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\\n. The degradation of \\n<inline-formula> <tex-math>${R}_{{on}{,}{sp}}$ </tex-math></inline-formula>\\n is only 8.6% under \\n<inline-formula> <tex-math>${I}_{d}$ </tex-math></inline-formula>\\n mode stress while it is as high as 15.8% for the conventional devices. At on-state, \\n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\\n degradation is only 9.1% while it is nearly 59.9% in the traditional device. At high voltage application regions, the device exhibits nearly 0% \\n<inline-formula> <tex-math>${C}_{GD}$ </tex-math></inline-formula>\\n degradation while it is as high as 43.8% in the traditional device. The results indicate the device’s robustness in both DC (Direct current) applications and RF (Radio frequency) applications.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609835\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609835/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10609835/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种高性能、低HCI(热载流子注入)降解 LDMOS(侧向双扩散金属氧化物半导体)器件。它由一个额外的微型 LOCOS(硅局部氧化)场板和一个微型 STI(浅沟道隔离)场板组成,无需额外的复杂制造工艺。我们制作了一系列器件,并优化了场板角轮廓。所提出的混合 FP(场板)能有效降低电场峰值,BV(击穿电压)高达 78.9V,而 ${R}_{on}{,}{sp}}$(特定导通电阻)低至 69.1~{{mathrm { m}}\Omega \cdot }{mm}^{2}$ ,与传统晶体管相比提高了 65.8%。同时,混合 FP 器件对 ${R}_{on,sp}$ 、阈值电压 ${V}_{T}$ 和栅-漏电容 ${C}_{GD}$ 的 HCI(热载流子注入)衰减性能更佳。在 ${I}_{d}$ 模式应力下,${R}_{on}{,}{sp}}$ 的劣化率仅为 8.6%,而传统器件的劣化率高达 15.8%。在导通状态下,${C}_{GD}$ 的劣化率仅为 9.1%,而传统器件的劣化率接近 59.9%。在高压应用区域,该器件的{C}_{GD}$劣化率几乎为 0%,而传统器件的劣化率高达 43.8%。这些结果表明,该器件在直流(DC)应用和射频(RF)应用中都具有很强的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High-Performance and Low HCI Degradation LDMOS Device With a Hybrid Field Plate
In this paper, a high-performance and low-HCI (Hot carrier injection) degradation LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. It consists of an additional mini LOCOS (Local oxidation of silicon) field plate combined with a mini STI (Shallow trench isolation) field plate without an additional complex fabrication process. A series of devices have been fabricated, and the field plate corner profile is optimized. The proposed hybrid FP(Field plate) can effectively reduce the electric field peak, and the BV (Breakdown voltage) achieves as high as 78.9V while the ${R}_{{on}{,}{sp}}$ (Specific on-resistance) is as low as $69.1~{{\mathrm { m}}\Omega \cdot }{mm}^{2}$ , which is 65.8% improved compared with conventional transistors. Meanwhile, the hybrid FP device owns much better HCI (Hot carrier injection) degradation performance on ${R}_{on,sp}$ , threshold voltage ${V}_{T}$ , and gate-drain capacitance ${C}_{GD}$ . The degradation of ${R}_{{on}{,}{sp}}$ is only 8.6% under ${I}_{d}$ mode stress while it is as high as 15.8% for the conventional devices. At on-state, ${C}_{GD}$ degradation is only 9.1% while it is nearly 59.9% in the traditional device. At high voltage application regions, the device exhibits nearly 0% ${C}_{GD}$ degradation while it is as high as 43.8% in the traditional device. The results indicate the device’s robustness in both DC (Direct current) applications and RF (Radio frequency) applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1