通过钠蒸发稳定钠离子电池中的 P2 层状氧化物电极

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-23 DOI:10.1038/s43246-024-00569-2
Maider Zarrabeitia, Iñigo Salazar, Begoña Acebedo, Miguel Ángel Muñoz-Márquez
{"title":"通过钠蒸发稳定钠离子电池中的 P2 层状氧化物电极","authors":"Maider Zarrabeitia, Iñigo Salazar, Begoña Acebedo, Miguel Ángel Muñoz-Márquez","doi":"10.1038/s43246-024-00569-2","DOIUrl":null,"url":null,"abstract":"Sodium-ion batteries are well positioned to become, in the near future, the energy storage system for stationary applications and light electromobility. However, two main drawbacks feed their underperformance, namely the irreversible sodium consumption during solid electrolyte interphase formation and the low sodiation degree of one of the most promising cathode materials: the P2-type layered oxides. Here, we show a scalable and low-cost sodiation process based on sodium thermal evaporation. This method tackles the poor sodiation degree of P2-type sodium layered oxides, thus overcoming the first irreversible capacity as demonstrated by manufacturing and testing all solid-state Na doped-Na~1Mn0.8Fe0.1Ti0.1O2 ǀǀ PEO-based polymer electrolyte ǀǀ Na full cells. The proposed sodium physical vapor deposition method opens the door for an easily scalable and low-cost strategy to incorporate any metal deficiency in the battery materials, further pushing the battery development. The energy density of sodium-ion batteries is lacking due to the low sodiation degree of promising layered cathode materials. Here, sodium thermal evaporation tackles the poor sodiation degree of P2-type sodium layered oxides, overcoming the first irreversible capacity in all solid-state full cells.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00569-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Stabilization of P2 layered oxide electrodes in sodium-ion batteries through sodium evaporation\",\"authors\":\"Maider Zarrabeitia, Iñigo Salazar, Begoña Acebedo, Miguel Ángel Muñoz-Márquez\",\"doi\":\"10.1038/s43246-024-00569-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sodium-ion batteries are well positioned to become, in the near future, the energy storage system for stationary applications and light electromobility. However, two main drawbacks feed their underperformance, namely the irreversible sodium consumption during solid electrolyte interphase formation and the low sodiation degree of one of the most promising cathode materials: the P2-type layered oxides. Here, we show a scalable and low-cost sodiation process based on sodium thermal evaporation. This method tackles the poor sodiation degree of P2-type sodium layered oxides, thus overcoming the first irreversible capacity as demonstrated by manufacturing and testing all solid-state Na doped-Na~1Mn0.8Fe0.1Ti0.1O2 ǀǀ PEO-based polymer electrolyte ǀǀ Na full cells. The proposed sodium physical vapor deposition method opens the door for an easily scalable and low-cost strategy to incorporate any metal deficiency in the battery materials, further pushing the battery development. The energy density of sodium-ion batteries is lacking due to the low sodiation degree of promising layered cathode materials. Here, sodium thermal evaporation tackles the poor sodiation degree of P2-type sodium layered oxides, overcoming the first irreversible capacity in all solid-state full cells.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00569-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00569-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00569-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在不久的将来,钠离子电池有望成为固定应用和轻型电动汽车的储能系统。然而,钠离子电池有两个主要缺点,一是在固体电解质相间形成过程中不可逆的钠消耗,二是最有前途的阴极材料之一:P2 型层状氧化物的钠化程度低。在此,我们展示了一种基于钠热蒸发的可扩展、低成本的钠化工艺。该方法解决了 P2- 型钠层状氧化物钠化程度低的问题,从而克服了第一种不可逆容量,这一点已通过制造和测试所有固态掺钠-Na~1Mn0.8Fe0.1Ti0.1O2 ǀPEO基聚合物电解质 ǀNa全电池得到证实。所提出的钠物理气相沉积方法为在电池材料中加入任何金属缺失物提供了一种易于扩展且成本低廉的策略,进一步推动了电池的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilization of P2 layered oxide electrodes in sodium-ion batteries through sodium evaporation
Sodium-ion batteries are well positioned to become, in the near future, the energy storage system for stationary applications and light electromobility. However, two main drawbacks feed their underperformance, namely the irreversible sodium consumption during solid electrolyte interphase formation and the low sodiation degree of one of the most promising cathode materials: the P2-type layered oxides. Here, we show a scalable and low-cost sodiation process based on sodium thermal evaporation. This method tackles the poor sodiation degree of P2-type sodium layered oxides, thus overcoming the first irreversible capacity as demonstrated by manufacturing and testing all solid-state Na doped-Na~1Mn0.8Fe0.1Ti0.1O2 ǀǀ PEO-based polymer electrolyte ǀǀ Na full cells. The proposed sodium physical vapor deposition method opens the door for an easily scalable and low-cost strategy to incorporate any metal deficiency in the battery materials, further pushing the battery development. The energy density of sodium-ion batteries is lacking due to the low sodiation degree of promising layered cathode materials. Here, sodium thermal evaporation tackles the poor sodiation degree of P2-type sodium layered oxides, overcoming the first irreversible capacity in all solid-state full cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Thermodynamic evidence for polaron stabilization inside the antiferromagnetic order of Eu5In2Sb6 Benefits and complexity of defects in metal-organic frameworks Multi-sensing yarns for continuous wireless sweat lactate monitoring Unexpected band structure changes within the higher-temperature antiferromagnetic state of CeBi Bioengineering approach for the design of magnetic bacterial cellulose membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1