{"title":"马鬃与二氧化钛纳米颗粒增强聚酯复合材料的开发与力学性能分析","authors":"Huma Ali, Savita Dixit and Lamjed Mansour","doi":"10.1088/2053-1591/ad64ac","DOIUrl":null,"url":null,"abstract":"This study aims to examine the effects of waste material more especially horse hair as fiber on mechanical and physical properties. Tensile, flexural, impact, and hardness properties of horse hair fiber and titanium dioxide nanoparticles (TiO2 NPs) polyester composite were investigated to determine whether the latter might be used as a new material in various engineering applications for a longer life. To improve the impact resistance of the composite, horse hair fiber is mixed in different ratios with titanium dioxide and polyester as filler. Tensile, flexural, and impact mechanical properties were assessed using the Universal Testing Machine, the Rockwell Hardness Testing Machine, and the Izod Impact Test. Specimens were hand-put up using various fiber weight ratios. The results of this study showed that Specimen 5 showed a tremendous increase in flexural strength (98.87 MPa), tensile strength (91.46 MPa), hardness (115 HV), impact strength (15.98 J m−1), and water uptake (10.18%) as compared to the neat and also with the other Specimens. Scanning electron microscopy (SEM) was used to investigate the fracture surface in more detail in order to search for failure mechanisms and the dispersion of nanoparticles. SEM micrographs verified the uniform dispersion of the nanoparticles. Results suggest that these composites can be used as a material for a variety of applications, including biological claims that they are a practical, durable, and environmentally friendly choice.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"55 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and mechanical characterization of horse hair with titanium dioxide nanoparticles reinforced polyester composite\",\"authors\":\"Huma Ali, Savita Dixit and Lamjed Mansour\",\"doi\":\"10.1088/2053-1591/ad64ac\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to examine the effects of waste material more especially horse hair as fiber on mechanical and physical properties. Tensile, flexural, impact, and hardness properties of horse hair fiber and titanium dioxide nanoparticles (TiO2 NPs) polyester composite were investigated to determine whether the latter might be used as a new material in various engineering applications for a longer life. To improve the impact resistance of the composite, horse hair fiber is mixed in different ratios with titanium dioxide and polyester as filler. Tensile, flexural, and impact mechanical properties were assessed using the Universal Testing Machine, the Rockwell Hardness Testing Machine, and the Izod Impact Test. Specimens were hand-put up using various fiber weight ratios. The results of this study showed that Specimen 5 showed a tremendous increase in flexural strength (98.87 MPa), tensile strength (91.46 MPa), hardness (115 HV), impact strength (15.98 J m−1), and water uptake (10.18%) as compared to the neat and also with the other Specimens. Scanning electron microscopy (SEM) was used to investigate the fracture surface in more detail in order to search for failure mechanisms and the dispersion of nanoparticles. SEM micrographs verified the uniform dispersion of the nanoparticles. Results suggest that these composites can be used as a material for a variety of applications, including biological claims that they are a practical, durable, and environmentally friendly choice.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad64ac\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad64ac","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and mechanical characterization of horse hair with titanium dioxide nanoparticles reinforced polyester composite
This study aims to examine the effects of waste material more especially horse hair as fiber on mechanical and physical properties. Tensile, flexural, impact, and hardness properties of horse hair fiber and titanium dioxide nanoparticles (TiO2 NPs) polyester composite were investigated to determine whether the latter might be used as a new material in various engineering applications for a longer life. To improve the impact resistance of the composite, horse hair fiber is mixed in different ratios with titanium dioxide and polyester as filler. Tensile, flexural, and impact mechanical properties were assessed using the Universal Testing Machine, the Rockwell Hardness Testing Machine, and the Izod Impact Test. Specimens were hand-put up using various fiber weight ratios. The results of this study showed that Specimen 5 showed a tremendous increase in flexural strength (98.87 MPa), tensile strength (91.46 MPa), hardness (115 HV), impact strength (15.98 J m−1), and water uptake (10.18%) as compared to the neat and also with the other Specimens. Scanning electron microscopy (SEM) was used to investigate the fracture surface in more detail in order to search for failure mechanisms and the dispersion of nanoparticles. SEM micrographs verified the uniform dispersion of the nanoparticles. Results suggest that these composites can be used as a material for a variety of applications, including biological claims that they are a practical, durable, and environmentally friendly choice.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.