{"title":"用全卷积神经网络检测乳腺癌","authors":"Nadine Matondo-Mvula, Khaled Elleithy","doi":"10.3390/e26080630","DOIUrl":null,"url":null,"abstract":"Quantum machine learning holds the potential to revolutionize cancer treatment and diagnostic imaging by uncovering complex patterns beyond the reach of classical methods. This study explores the effectiveness of quantum convolutional layers in classifying ultrasound breast images for cancer detection. By encoding classical data into quantum states through angle embedding and employing a robustly entangled 9-qubit circuit design with an SU(4) gate, we developed a Quantum Convolutional Neural Network (QCNN) and compared it to a classical CNN of similar architecture. Our QCNN model, leveraging two quantum circuits as convolutional layers, achieved an impressive peak training accuracy of 76.66% and a validation accuracy of 87.17% at a learning rate of 1 × 10−2. In contrast, the classical CNN model attained a training accuracy of 77.52% and a validation accuracy of 83.33%. These compelling results highlight the potential of quantum circuits to serve as effective convolutional layers for feature extraction in image classification, especially with small datasets.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast Cancer Detection with Quanvolutional Neural Networks\",\"authors\":\"Nadine Matondo-Mvula, Khaled Elleithy\",\"doi\":\"10.3390/e26080630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum machine learning holds the potential to revolutionize cancer treatment and diagnostic imaging by uncovering complex patterns beyond the reach of classical methods. This study explores the effectiveness of quantum convolutional layers in classifying ultrasound breast images for cancer detection. By encoding classical data into quantum states through angle embedding and employing a robustly entangled 9-qubit circuit design with an SU(4) gate, we developed a Quantum Convolutional Neural Network (QCNN) and compared it to a classical CNN of similar architecture. Our QCNN model, leveraging two quantum circuits as convolutional layers, achieved an impressive peak training accuracy of 76.66% and a validation accuracy of 87.17% at a learning rate of 1 × 10−2. In contrast, the classical CNN model attained a training accuracy of 77.52% and a validation accuracy of 83.33%. These compelling results highlight the potential of quantum circuits to serve as effective convolutional layers for feature extraction in image classification, especially with small datasets.\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26080630\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26080630","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Breast Cancer Detection with Quanvolutional Neural Networks
Quantum machine learning holds the potential to revolutionize cancer treatment and diagnostic imaging by uncovering complex patterns beyond the reach of classical methods. This study explores the effectiveness of quantum convolutional layers in classifying ultrasound breast images for cancer detection. By encoding classical data into quantum states through angle embedding and employing a robustly entangled 9-qubit circuit design with an SU(4) gate, we developed a Quantum Convolutional Neural Network (QCNN) and compared it to a classical CNN of similar architecture. Our QCNN model, leveraging two quantum circuits as convolutional layers, achieved an impressive peak training accuracy of 76.66% and a validation accuracy of 87.17% at a learning rate of 1 × 10−2. In contrast, the classical CNN model attained a training accuracy of 77.52% and a validation accuracy of 83.33%. These compelling results highlight the potential of quantum circuits to serve as effective convolutional layers for feature extraction in image classification, especially with small datasets.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.