用于街景实时语义分割的门控特征聚合和配准网络

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-23 DOI:10.1007/s00530-024-01429-2
Qian Liu, Zhensheng Li, Youwei Qi, Cunbao Wang
{"title":"用于街景实时语义分割的门控特征聚合和配准网络","authors":"Qian Liu, Zhensheng Li, Youwei Qi, Cunbao Wang","doi":"10.1007/s00530-024-01429-2","DOIUrl":null,"url":null,"abstract":"<p>Semantic segmentation of street scenes is important for the vision-based application of autonomous driving. Recently, high-accuracy networks based on deep learning have been widely applied to semantic segmentation, but their inference speeds are slow. In order to achieve faster speed, most popular real-time network architectures adopt stepwise downsampling operation in the backbone to obtain features with different sizes. However, they ignore the misalignment between feature maps from different levels, and their simple feature aggregation using element-wise addition or channel-wise concatenation may submerge the useful information in a large number of useless information. To deal with these problems, we propose a gated feature aggregation and alignment network (GFAANet) for real-time semantic segmentation of street scenes. In GFAANet, a feature alignment aggregation module is developed to effectively align and aggregate the feature maps from different levels. And we present a gated feature aggregation module to selectively aggregate and refine effective information from multi-stage features of the backbone network using gates. Furthermore, a depthwise separable pyramid pooling module based on low-resolution feature maps is designed as a context extractor to expand the effective receptive fields and fuse multi-scale contexts. Experimental results on two challenging street scene benchmark datasets show that GFAANet achieves highest accuracy in real-time semantic segmentation of street scenes, as compared with the state-of-the-art. We conclude that our GFAANet can quickly and effectively segment street scene images, which may provide technical support for autonomous driving.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gated feature aggregate and alignment network for real-time semantic segmentation of street scenes\",\"authors\":\"Qian Liu, Zhensheng Li, Youwei Qi, Cunbao Wang\",\"doi\":\"10.1007/s00530-024-01429-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semantic segmentation of street scenes is important for the vision-based application of autonomous driving. Recently, high-accuracy networks based on deep learning have been widely applied to semantic segmentation, but their inference speeds are slow. In order to achieve faster speed, most popular real-time network architectures adopt stepwise downsampling operation in the backbone to obtain features with different sizes. However, they ignore the misalignment between feature maps from different levels, and their simple feature aggregation using element-wise addition or channel-wise concatenation may submerge the useful information in a large number of useless information. To deal with these problems, we propose a gated feature aggregation and alignment network (GFAANet) for real-time semantic segmentation of street scenes. In GFAANet, a feature alignment aggregation module is developed to effectively align and aggregate the feature maps from different levels. And we present a gated feature aggregation module to selectively aggregate and refine effective information from multi-stage features of the backbone network using gates. Furthermore, a depthwise separable pyramid pooling module based on low-resolution feature maps is designed as a context extractor to expand the effective receptive fields and fuse multi-scale contexts. Experimental results on two challenging street scene benchmark datasets show that GFAANet achieves highest accuracy in real-time semantic segmentation of street scenes, as compared with the state-of-the-art. We conclude that our GFAANet can quickly and effectively segment street scene images, which may provide technical support for autonomous driving.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01429-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01429-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

街道场景的语义分割对于基于视觉的自动驾驶应用非常重要。最近,基于深度学习的高精度网络被广泛应用于语义分割,但其推理速度较慢。为了实现更快的速度,大多数流行的实时网络架构都在骨干网中采用逐步降采样操作,以获得不同大小的特征。然而,它们忽略了不同层次的特征图之间的错位,而且使用元素加法或信道连接进行简单的特征聚合可能会将有用信息淹没在大量无用信息中。为了解决这些问题,我们提出了一种用于街景实时语义分割的门控特征聚合和配准网络(GFAANet)。在 GFAANet 中,我们开发了一个特征对齐聚合模块,以有效地对齐和聚合来自不同层次的特征图。我们还提出了一个门控特征聚合模块,利用门控技术从骨干网络的多级特征中选择性地聚合和提炼有效信息。此外,我们还设计了一个基于低分辨率特征图的深度可分离金字塔汇集模块,作为情境提取器来扩展有效感受野和融合多尺度情境。在两个具有挑战性的街景基准数据集上的实验结果表明,与最先进的技术相比,GFAANet 在街景实时语义分割方面达到了最高的准确率。我们的结论是,我们的 GFAANet 可以快速有效地分割街道场景图像,从而为自动驾驶提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gated feature aggregate and alignment network for real-time semantic segmentation of street scenes

Semantic segmentation of street scenes is important for the vision-based application of autonomous driving. Recently, high-accuracy networks based on deep learning have been widely applied to semantic segmentation, but their inference speeds are slow. In order to achieve faster speed, most popular real-time network architectures adopt stepwise downsampling operation in the backbone to obtain features with different sizes. However, they ignore the misalignment between feature maps from different levels, and their simple feature aggregation using element-wise addition or channel-wise concatenation may submerge the useful information in a large number of useless information. To deal with these problems, we propose a gated feature aggregation and alignment network (GFAANet) for real-time semantic segmentation of street scenes. In GFAANet, a feature alignment aggregation module is developed to effectively align and aggregate the feature maps from different levels. And we present a gated feature aggregation module to selectively aggregate and refine effective information from multi-stage features of the backbone network using gates. Furthermore, a depthwise separable pyramid pooling module based on low-resolution feature maps is designed as a context extractor to expand the effective receptive fields and fuse multi-scale contexts. Experimental results on two challenging street scene benchmark datasets show that GFAANet achieves highest accuracy in real-time semantic segmentation of street scenes, as compared with the state-of-the-art. We conclude that our GFAANet can quickly and effectively segment street scene images, which may provide technical support for autonomous driving.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1