交通跟踪:重新思考交通监控中多车跟踪的运动和外观线索

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-25 DOI:10.1007/s00530-024-01407-8
Hui Cai, Haifeng Lin, Dapeng Liu
{"title":"交通跟踪:重新思考交通监控中多车跟踪的运动和外观线索","authors":"Hui Cai, Haifeng Lin, Dapeng Liu","doi":"10.1007/s00530-024-01407-8","DOIUrl":null,"url":null,"abstract":"<p>Analyzing traffic flow based on data from traffic monitoring is an essential component of intelligent transportation systems. In most traffic scenarios, vehicles are the primary targets, so multi-object tracking of vehicles in traffic monitoring is a critical subject. In view of the current difficulties, such as complex road conditions, numerous obstructions, and similar vehicle appearances, we propose a detection-based multi-object vehicle tracking algorithm that combines motion and appearance cues. Firstly, to improve the motion prediction accuracy, we propose a Kalman filter that adaptively updates the noise according to the motion matching cost and detection confidence score, combined with exponential transformation and residuals. Then, we propose a combined distance to utilize motion and appearance cues. Finally, we present a trajectory recovery strategy to handle unmatched trajectories and detections. Experimental results on the UA-DETRAC dataset demonstrate that this method achieves excellent tracking performance for vehicle tracking tasks in traffic monitoring perspectives, meeting the practical application demands of complex traffic scenarios.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TrafficTrack: rethinking the motion and appearance cue for multi-vehicle tracking in traffic monitoring\",\"authors\":\"Hui Cai, Haifeng Lin, Dapeng Liu\",\"doi\":\"10.1007/s00530-024-01407-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analyzing traffic flow based on data from traffic monitoring is an essential component of intelligent transportation systems. In most traffic scenarios, vehicles are the primary targets, so multi-object tracking of vehicles in traffic monitoring is a critical subject. In view of the current difficulties, such as complex road conditions, numerous obstructions, and similar vehicle appearances, we propose a detection-based multi-object vehicle tracking algorithm that combines motion and appearance cues. Firstly, to improve the motion prediction accuracy, we propose a Kalman filter that adaptively updates the noise according to the motion matching cost and detection confidence score, combined with exponential transformation and residuals. Then, we propose a combined distance to utilize motion and appearance cues. Finally, we present a trajectory recovery strategy to handle unmatched trajectories and detections. Experimental results on the UA-DETRAC dataset demonstrate that this method achieves excellent tracking performance for vehicle tracking tasks in traffic monitoring perspectives, meeting the practical application demands of complex traffic scenarios.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01407-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01407-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

根据交通监控数据分析交通流量是智能交通系统的重要组成部分。在大多数交通场景中,车辆是主要目标,因此在交通监控中对车辆进行多目标跟踪是一个重要课题。针对目前存在的困难,如路况复杂、障碍物众多、车辆外观相似等,我们提出了一种基于检测的多目标车辆跟踪算法,该算法结合了运动和外观线索。首先,为了提高运动预测精度,我们提出了卡尔曼滤波器,根据运动匹配成本和检测置信度得分,结合指数变换和残差,自适应地更新噪声。然后,我们提出了利用运动和外观线索的组合距离。最后,我们提出了一种轨迹恢复策略,以处理未匹配的轨迹和检测。在 UA-DETRAC 数据集上的实验结果表明,该方法在交通监控视角下的车辆跟踪任务中取得了优异的跟踪性能,满足了复杂交通场景的实际应用需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrafficTrack: rethinking the motion and appearance cue for multi-vehicle tracking in traffic monitoring

Analyzing traffic flow based on data from traffic monitoring is an essential component of intelligent transportation systems. In most traffic scenarios, vehicles are the primary targets, so multi-object tracking of vehicles in traffic monitoring is a critical subject. In view of the current difficulties, such as complex road conditions, numerous obstructions, and similar vehicle appearances, we propose a detection-based multi-object vehicle tracking algorithm that combines motion and appearance cues. Firstly, to improve the motion prediction accuracy, we propose a Kalman filter that adaptively updates the noise according to the motion matching cost and detection confidence score, combined with exponential transformation and residuals. Then, we propose a combined distance to utilize motion and appearance cues. Finally, we present a trajectory recovery strategy to handle unmatched trajectories and detections. Experimental results on the UA-DETRAC dataset demonstrate that this method achieves excellent tracking performance for vehicle tracking tasks in traffic monitoring perspectives, meeting the practical application demands of complex traffic scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1