{"title":"利用降压压电横梁进行海洋非线性能量采集(NEH)","authors":"Moslem Heidari, Gholam Hossein Rahimi, Saeed Bab","doi":"10.1016/j.apor.2024.104115","DOIUrl":null,"url":null,"abstract":"This paper presents a new energy harvesting method using a buckled beam with a piezoelectric layer inside a buoy. The buoy is designed as a hemispherical point energy absorber and is connected to the sea bed. Two piezoelectric harvesters are placed inside the buoy in horizontal and vertical directions to capture the rotational motion of water particles on the sea surface. Masses are added to the middle of the beams to enhance the system's harvesting behavior. The equations of motion of the system are obtained using the Hamilton principle. These six coupled non-linear equations are solved using the Runge-Kutta numerical method. The dynamic behavior of the buoy and the buckled beam and the energy harvesting system's electrical behavior are analyzed. An analytical method of complexification-averaging is also examined and found to produce results similar to those of the numerical method. A simplified finite element model is presented to show that the displacement magnitude peak of the response obtained in the numerical solution method can be accepted. The study investigates the effects of limited changes in parameters such as frequency and amplitude of waves, electrical circuit resistance, piezoelectric layer characteristics, and buckled beam characteristics on the system behavior. It is shown that wave amplitude has a more significant role in energy production.","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ocean non-linear energy harvesting (NEH) with a buckled piezoelectric beam\",\"authors\":\"Moslem Heidari, Gholam Hossein Rahimi, Saeed Bab\",\"doi\":\"10.1016/j.apor.2024.104115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new energy harvesting method using a buckled beam with a piezoelectric layer inside a buoy. The buoy is designed as a hemispherical point energy absorber and is connected to the sea bed. Two piezoelectric harvesters are placed inside the buoy in horizontal and vertical directions to capture the rotational motion of water particles on the sea surface. Masses are added to the middle of the beams to enhance the system's harvesting behavior. The equations of motion of the system are obtained using the Hamilton principle. These six coupled non-linear equations are solved using the Runge-Kutta numerical method. The dynamic behavior of the buoy and the buckled beam and the energy harvesting system's electrical behavior are analyzed. An analytical method of complexification-averaging is also examined and found to produce results similar to those of the numerical method. A simplified finite element model is presented to show that the displacement magnitude peak of the response obtained in the numerical solution method can be accepted. The study investigates the effects of limited changes in parameters such as frequency and amplitude of waves, electrical circuit resistance, piezoelectric layer characteristics, and buckled beam characteristics on the system behavior. It is shown that wave amplitude has a more significant role in energy production.\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apor.2024.104115\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.apor.2024.104115","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Ocean non-linear energy harvesting (NEH) with a buckled piezoelectric beam
This paper presents a new energy harvesting method using a buckled beam with a piezoelectric layer inside a buoy. The buoy is designed as a hemispherical point energy absorber and is connected to the sea bed. Two piezoelectric harvesters are placed inside the buoy in horizontal and vertical directions to capture the rotational motion of water particles on the sea surface. Masses are added to the middle of the beams to enhance the system's harvesting behavior. The equations of motion of the system are obtained using the Hamilton principle. These six coupled non-linear equations are solved using the Runge-Kutta numerical method. The dynamic behavior of the buoy and the buckled beam and the energy harvesting system's electrical behavior are analyzed. An analytical method of complexification-averaging is also examined and found to produce results similar to those of the numerical method. A simplified finite element model is presented to show that the displacement magnitude peak of the response obtained in the numerical solution method can be accepted. The study investigates the effects of limited changes in parameters such as frequency and amplitude of waves, electrical circuit resistance, piezoelectric layer characteristics, and buckled beam characteristics on the system behavior. It is shown that wave amplitude has a more significant role in energy production.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.