{"title":"使用 NH3-H2O-LiBr 混合物的单效吸收冷却系统的实验评估及其与 NH3-H2O 的比较","authors":"","doi":"10.1016/j.ijrefrig.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>Absorption cooling systems present an appealing alternative to conventional compression systems as they can leverage low-grade heat sources to generate a cooling effect. The choice of the working fluid in the absorption system plays a crucial role in its performance and applications, making it a critical factor in the system's design and operation. While specific hypotheses in the literature propose advantages of using ternary mixtures over typical binary working fluids, existing experimental studies lack conclusive evidence. Therefore, further research on this topic is imperative. This study experimentally assesses the performance of a single-effect absorption cooling system using the ternary NH<sub>3</sub>-H<sub>2</sub>O-LiBr mixture. The results are then compared to those of the binary NH<sub>3</sub>-H<sub>2</sub>O mixture. The assessment and comparison cover a wide range of operating conditions and similar concentration values. The results indicate that, from an operational standpoint, the ternary mixture offers significant advantages regarding system pressures and operational stability. However, from a performance perspective, at least within the tested mixture concentrations, the ternary mixture generally appears less attractive than the binary mixture. Nevertheless, it is worth noting that when driven by heat sources at higher temperatures, the ternary mixture could exhibit relevant performance characteristics.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental assessment of a single-effect absorption cooling system operating with the NH3-H2O-LiBr mixture and its comparison with NH3-H2O\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Absorption cooling systems present an appealing alternative to conventional compression systems as they can leverage low-grade heat sources to generate a cooling effect. The choice of the working fluid in the absorption system plays a crucial role in its performance and applications, making it a critical factor in the system's design and operation. While specific hypotheses in the literature propose advantages of using ternary mixtures over typical binary working fluids, existing experimental studies lack conclusive evidence. Therefore, further research on this topic is imperative. This study experimentally assesses the performance of a single-effect absorption cooling system using the ternary NH<sub>3</sub>-H<sub>2</sub>O-LiBr mixture. The results are then compared to those of the binary NH<sub>3</sub>-H<sub>2</sub>O mixture. The assessment and comparison cover a wide range of operating conditions and similar concentration values. The results indicate that, from an operational standpoint, the ternary mixture offers significant advantages regarding system pressures and operational stability. However, from a performance perspective, at least within the tested mixture concentrations, the ternary mixture generally appears less attractive than the binary mixture. Nevertheless, it is worth noting that when driven by heat sources at higher temperatures, the ternary mixture could exhibit relevant performance characteristics.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002548\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002548","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental assessment of a single-effect absorption cooling system operating with the NH3-H2O-LiBr mixture and its comparison with NH3-H2O
Absorption cooling systems present an appealing alternative to conventional compression systems as they can leverage low-grade heat sources to generate a cooling effect. The choice of the working fluid in the absorption system plays a crucial role in its performance and applications, making it a critical factor in the system's design and operation. While specific hypotheses in the literature propose advantages of using ternary mixtures over typical binary working fluids, existing experimental studies lack conclusive evidence. Therefore, further research on this topic is imperative. This study experimentally assesses the performance of a single-effect absorption cooling system using the ternary NH3-H2O-LiBr mixture. The results are then compared to those of the binary NH3-H2O mixture. The assessment and comparison cover a wide range of operating conditions and similar concentration values. The results indicate that, from an operational standpoint, the ternary mixture offers significant advantages regarding system pressures and operational stability. However, from a performance perspective, at least within the tested mixture concentrations, the ternary mixture generally appears less attractive than the binary mixture. Nevertheless, it is worth noting that when driven by heat sources at higher temperatures, the ternary mixture could exhibit relevant performance characteristics.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.