Eliot W. Robson, Jack Spalding-Jamieson, Da Wei Zheng
{"title":"用锯子雕刻 3D 多面体","authors":"Eliot W. Robson, Jack Spalding-Jamieson, Da Wei Zheng","doi":"arxiv-2407.15981","DOIUrl":null,"url":null,"abstract":"We investigate the problem of carving an $n$-face triangulated\nthree-dimensional polytope using a tool to make cuts modelled by either a\nhalf-plane or sweeps from an infinite ray. In the case of half-planes cuts, we\npresent a deterministic algorithm running in $O(n^2)$ time and a randomized\nalgorithm running in $O(n^{3/2+\\varepsilon})$ expected time for any\n$\\varepsilon>0$. In the case of cuts defined by sweeps of infinite rays, we\npresent an algorithm running in $O(n^5)$ time.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carving Polytopes with Saws in 3D\",\"authors\":\"Eliot W. Robson, Jack Spalding-Jamieson, Da Wei Zheng\",\"doi\":\"arxiv-2407.15981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the problem of carving an $n$-face triangulated\\nthree-dimensional polytope using a tool to make cuts modelled by either a\\nhalf-plane or sweeps from an infinite ray. In the case of half-planes cuts, we\\npresent a deterministic algorithm running in $O(n^2)$ time and a randomized\\nalgorithm running in $O(n^{3/2+\\\\varepsilon})$ expected time for any\\n$\\\\varepsilon>0$. In the case of cuts defined by sweeps of infinite rays, we\\npresent an algorithm running in $O(n^5)$ time.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We investigate the problem of carving an $n$-face triangulated
three-dimensional polytope using a tool to make cuts modelled by either a
half-plane or sweeps from an infinite ray. In the case of half-planes cuts, we
present a deterministic algorithm running in $O(n^2)$ time and a randomized
algorithm running in $O(n^{3/2+\varepsilon})$ expected time for any
$\varepsilon>0$. In the case of cuts defined by sweeps of infinite rays, we
present an algorithm running in $O(n^5)$ time.