{"title":"设计利用气泡沿浸入水中的氟聚合物滑动的电能收集装置","authors":"O E Håskjold and L E Helseth","doi":"10.1088/1361-665x/ad5bcf","DOIUrl":null,"url":null,"abstract":"Recent research has shown that it is possible to utilize contact electrification combined with electrostatic induction to harvest electrical energy from the mechanical motion of air bubbles sliding along a charged solid surface immersed in water. The working principle of these devices is simple, but the design is usually complicated as transduction efficiency depends on a number of interdependent parameters. Here we propose a simple analytical model and demonstrate how it can be used to determine the optimal energy per bubble for a given resistive load. The model allows one to estimate the optimal energy harvested per bubble in terms of polymer thickness, electrode separation and load resistance. It is shown that the model provides a good fit to experimental data. The model may be used as an initial step when designing energy harvesting devices utilizing air bubbles sliding along a solid surface.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of electrical energy harvesting devices utilizing air bubbles sliding along a fluoropolymer immersed in water\",\"authors\":\"O E Håskjold and L E Helseth\",\"doi\":\"10.1088/1361-665x/ad5bcf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that it is possible to utilize contact electrification combined with electrostatic induction to harvest electrical energy from the mechanical motion of air bubbles sliding along a charged solid surface immersed in water. The working principle of these devices is simple, but the design is usually complicated as transduction efficiency depends on a number of interdependent parameters. Here we propose a simple analytical model and demonstrate how it can be used to determine the optimal energy per bubble for a given resistive load. The model allows one to estimate the optimal energy harvested per bubble in terms of polymer thickness, electrode separation and load resistance. It is shown that the model provides a good fit to experimental data. The model may be used as an initial step when designing energy harvesting devices utilizing air bubbles sliding along a solid surface.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad5bcf\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5bcf","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Design of electrical energy harvesting devices utilizing air bubbles sliding along a fluoropolymer immersed in water
Recent research has shown that it is possible to utilize contact electrification combined with electrostatic induction to harvest electrical energy from the mechanical motion of air bubbles sliding along a charged solid surface immersed in water. The working principle of these devices is simple, but the design is usually complicated as transduction efficiency depends on a number of interdependent parameters. Here we propose a simple analytical model and demonstrate how it can be used to determine the optimal energy per bubble for a given resistive load. The model allows one to estimate the optimal energy harvested per bubble in terms of polymer thickness, electrode separation and load resistance. It is shown that the model provides a good fit to experimental data. The model may be used as an initial step when designing energy harvesting devices utilizing air bubbles sliding along a solid surface.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.