智能无线柔性绷带,内含载药聚己内酯微粒,用于实时监测和治疗慢性伤口。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-07-29 DOI:10.1002/jbm.b.35454
Zahra Pazhouhnia, Ali Farzin, Hossein Rastgar, Manoochehr Dadgarnezhad, Behrooz Jannat
{"title":"智能无线柔性绷带,内含载药聚己内酯微粒,用于实时监测和治疗慢性伤口。","authors":"Zahra Pazhouhnia,&nbsp;Ali Farzin,&nbsp;Hossein Rastgar,&nbsp;Manoochehr Dadgarnezhad,&nbsp;Behrooz Jannat","doi":"10.1002/jbm.b.35454","DOIUrl":null,"url":null,"abstract":"<p>The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart wireless flexible bandage containing drug loaded polycaprolactone microparticles for real-time monitoring and treatment of chronic wounds\",\"authors\":\"Zahra Pazhouhnia,&nbsp;Ali Farzin,&nbsp;Hossein Rastgar,&nbsp;Manoochehr Dadgarnezhad,&nbsp;Behrooz Jannat\",\"doi\":\"10.1002/jbm.b.35454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35454\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35454","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在美国,超过 2500 万人的生活质量受到慢性伤口的负面影响。他们很容易受到感染,最终可能导致失去肢体。在适当的时候让溃疡接触治疗药物,可以提高愈合率。在闭环系统中按需释放药物将有助于我们实现目标。在这项研究中,我们开发了一个平台,能够通过无线方式读取伤口的 pH 值来实时诊断细菌感染,并按需缓慢地在局部施用抗生素。药物载体微颗粒、电贴片、集成微加热器的热致伸缩水凝胶和柔性 pH 传感器组成了闭环贴片。据报道,通过在热响应水凝胶中嵌入药物封装疏水性微颗粒,可以实现头孢唑啉的缓慢和智能释放。利用可编程绷带提供抗生素药物不仅需要选择适当的治疗物质,还需要控制药物的释放及其在伤口区域的释放速度。我们的研究结果表明,使用头孢唑啉包裹的聚己内酯(PCL)微粒可以有效调节慢性皮肤伤口的抗生素治疗。研究结果还表明,当伤口敷料的温度达到 37°C 时,头孢唑啉会从热响应 Pnipam 水凝胶中大量逐渐释放出来。我们相信,所开发的柔性智能绷带可对慢性伤口愈合产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart wireless flexible bandage containing drug loaded polycaprolactone microparticles for real-time monitoring and treatment of chronic wounds

The quality of life is negatively impacted by chronic wounds for more than 25 million people in the US. They are quite prone to infection, which may lead to the eventual loss of a limb. By exposing the ulcers to treatment agents at the appropriate time, the healing rate is increased. On-demand drug release in a closed-loop system will aid us in reaching our goal. In this study, we have developed a platform capable of real-time diagnosis of bacterial infection by wirelessly reading wound pH, as well as slow and on-demand local administration of antibiotics. The drug carrier microparticles, an electrical patch, a thermoresponsive hydrogel with an integrated microheater, and a flexible pH sensor comprised the closed-loop patch. Here it is reported that slow and smart release of cefazolin can be addressed by incorporation of drug encapsulated hydrophobic microparticles embedded into a thermo-responsive hydrogel. The utilization of a programmable bandage to provide antibiotic medication highlights the need of not only choosing appropriate therapeutic substances but also the controlled release of the medicine and its rate of release within the wound area. The results of our study indicate that the use of cefazolin encapsulated polycaprolactone (PCL) microparticles can effectively regulate the application of antibiotic treatment for chronic skin wounds. The results also showed a substantial gradual release of cefazolin from the thermo-responsive Pnipam hydrogel when the wound dressing was subjected to a temperature of 37°C. We believe that the developed flexible smart bandage can have a significant impact on chronic wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1