Savannah Marshall Moscon, Elizabeth Neely, Elizabeth Proctor, James Connor
{"title":"铁调节基因(Hfe)中的一个常见变体改变了易受神经退行性病变影响的脑区的代谢和转录情况。","authors":"Savannah Marshall Moscon, Elizabeth Neely, Elizabeth Proctor, James Connor","doi":"10.1111/jnc.16171","DOIUrl":null,"url":null,"abstract":"<p>The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16171","citationCount":"0","resultStr":"{\"title\":\"A common variant in the iron regulatory gene (Hfe) alters the metabolic and transcriptional landscape in brain regions vulnerable to neurodegeneration\",\"authors\":\"Savannah Marshall Moscon, Elizabeth Neely, Elizabeth Proctor, James Connor\",\"doi\":\"10.1111/jnc.16171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16171\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16171\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16171","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A common variant in the iron regulatory gene (Hfe) alters the metabolic and transcriptional landscape in brain regions vulnerable to neurodegeneration
The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.