日本鹌鹑在热应激条件下的生殖反应机制。

IF 3 3区 地球科学 Q2 BIOPHYSICS International Journal of Biometeorology Pub Date : 2024-07-29 DOI:10.1007/s00484-024-02742-1
Ifeanyichukwu Chukwuemeka Egbuniwe, Martins Steven Akogwu, Timothy Ugochukwu Obetta
{"title":"日本鹌鹑在热应激条件下的生殖反应机制。","authors":"Ifeanyichukwu Chukwuemeka Egbuniwe, Martins Steven Akogwu, Timothy Ugochukwu Obetta","doi":"10.1007/s00484-024-02742-1","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to heat stress can cause a significant increase in the death rate and disease susceptibility of poultry birds, ultimately impacting the profitability of the poultry industry. Despite being a more economical choice, Japanese quails (Coturnix japonica) are not immune to the harmful effects of heat stress. Quails may experience negative effects on their reproductive performance due to excessive reactive molecules caused by heat stress. However, they have developed various mechanisms to maintain their reproductive abilities in such conditions. The neuroendocrine system in birds plays a vital role in regulating their reproductive responses to thermal stress, and it is also connected to other environmental factors such as photoperiod that can impact their reproductive performance. Hormones are crucial in the complex interactions necessary for sexual maturation and reproductive responses to heat stress in Japanese quails living in stressful thermal conditions.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms underlying reproductive responses of Japanese quails to heat stress conditions.\",\"authors\":\"Ifeanyichukwu Chukwuemeka Egbuniwe, Martins Steven Akogwu, Timothy Ugochukwu Obetta\",\"doi\":\"10.1007/s00484-024-02742-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to heat stress can cause a significant increase in the death rate and disease susceptibility of poultry birds, ultimately impacting the profitability of the poultry industry. Despite being a more economical choice, Japanese quails (Coturnix japonica) are not immune to the harmful effects of heat stress. Quails may experience negative effects on their reproductive performance due to excessive reactive molecules caused by heat stress. However, they have developed various mechanisms to maintain their reproductive abilities in such conditions. The neuroendocrine system in birds plays a vital role in regulating their reproductive responses to thermal stress, and it is also connected to other environmental factors such as photoperiod that can impact their reproductive performance. Hormones are crucial in the complex interactions necessary for sexual maturation and reproductive responses to heat stress in Japanese quails living in stressful thermal conditions.</p>\",\"PeriodicalId\":588,\"journal\":{\"name\":\"International Journal of Biometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00484-024-02742-1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-024-02742-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

暴露在热应激下会导致家禽死亡率和疾病易感性显著增加,最终影响家禽业的盈利能力。尽管日本鹌鹑(Coturnix japonica)是一种更经济的选择,但它们也不能幸免于热应激的有害影响。由于热应激导致反应分子过多,鹌鹑的繁殖性能可能会受到负面影响。不过,鹌鹑已经发展出各种机制,以在这种条件下保持其繁殖能力。鸟类的神经内分泌系统在调节鸟类对热应激的生殖反应方面起着至关重要的作用,它还与光周期等其他影响鸟类生殖能力的环境因素有关。激素在日本鹌鹑性成熟和对热应激的生殖反应所需的复杂相互作用中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms underlying reproductive responses of Japanese quails to heat stress conditions.

Exposure to heat stress can cause a significant increase in the death rate and disease susceptibility of poultry birds, ultimately impacting the profitability of the poultry industry. Despite being a more economical choice, Japanese quails (Coturnix japonica) are not immune to the harmful effects of heat stress. Quails may experience negative effects on their reproductive performance due to excessive reactive molecules caused by heat stress. However, they have developed various mechanisms to maintain their reproductive abilities in such conditions. The neuroendocrine system in birds plays a vital role in regulating their reproductive responses to thermal stress, and it is also connected to other environmental factors such as photoperiod that can impact their reproductive performance. Hormones are crucial in the complex interactions necessary for sexual maturation and reproductive responses to heat stress in Japanese quails living in stressful thermal conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
9.40%
发文量
183
审稿时长
1 months
期刊介绍: The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment. Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health. The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.
期刊最新文献
Enhancing autumn greenway walking experience: Exploring the combined effects of noise and thermal environment. Asymmetric responses of EVI and tree ring growth to extreme climate on the northeastern margin of the Tibetan Plateau. Effect of various temperature indicators on patients' hospitalization with cardiovascular diseases in Zhangye city, China. Orthopaedic patients' emergency department attendance behavior in relation to weather conditions: temperature, rain, day and time, and regional thursday effect. Forecasting thermal stress for sports tourists at the 2026 FIFA World Cup.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1