Alexis Kalk, Lea Leuthner, Christian Kupper, Marc Hiller
{"title":"基于三电极测量的商用锂离子电池老化优化充电状态控制多级恒流 (MCC) 快速充电算法","authors":"Alexis Kalk, Lea Leuthner, Christian Kupper, Marc Hiller","doi":"10.3390/batteries10080267","DOIUrl":null,"url":null,"abstract":"This paper proposes a method that leads to a highly accurate state-of-charge dependent multi-stage constant current (MCC) charging algorithm for electric bicycle batteries to reduce the charging time without accelerating aging by avoiding Li-plating. First, the relation between the current rate, state-of-charge, and Li-plating is experimentally analyzed with the help of three-electrode measurements. Therefore, a SOC-dependent charging algorithm is proposed. Secondly, a SOC estimation algorithm based on an Extended Kalman Filter is developed in MATLAB/Simulink to conduct high accuracy SOC estimations and control precisely the charging algorithm. The results of the experiments showed that the Root Mean Square Error (RMSE) of SOC estimation is 1.08%, and the charging time from 0% to 80% SOC is reduced by 30%.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"19 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements\",\"authors\":\"Alexis Kalk, Lea Leuthner, Christian Kupper, Marc Hiller\",\"doi\":\"10.3390/batteries10080267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method that leads to a highly accurate state-of-charge dependent multi-stage constant current (MCC) charging algorithm for electric bicycle batteries to reduce the charging time without accelerating aging by avoiding Li-plating. First, the relation between the current rate, state-of-charge, and Li-plating is experimentally analyzed with the help of three-electrode measurements. Therefore, a SOC-dependent charging algorithm is proposed. Secondly, a SOC estimation algorithm based on an Extended Kalman Filter is developed in MATLAB/Simulink to conduct high accuracy SOC estimations and control precisely the charging algorithm. The results of the experiments showed that the Root Mean Square Error (RMSE) of SOC estimation is 1.08%, and the charging time from 0% to 80% SOC is reduced by 30%.\",\"PeriodicalId\":502356,\"journal\":{\"name\":\"Batteries\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10080267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10080267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements
This paper proposes a method that leads to a highly accurate state-of-charge dependent multi-stage constant current (MCC) charging algorithm for electric bicycle batteries to reduce the charging time without accelerating aging by avoiding Li-plating. First, the relation between the current rate, state-of-charge, and Li-plating is experimentally analyzed with the help of three-electrode measurements. Therefore, a SOC-dependent charging algorithm is proposed. Secondly, a SOC estimation algorithm based on an Extended Kalman Filter is developed in MATLAB/Simulink to conduct high accuracy SOC estimations and control precisely the charging algorithm. The results of the experiments showed that the Root Mean Square Error (RMSE) of SOC estimation is 1.08%, and the charging time from 0% to 80% SOC is reduced by 30%.