在建筑围护结构设计中应用仿生策略以实现集水

IF 1 Q3 MULTIDISCIPLINARY SCIENCES gazi university journal of science Pub Date : 2024-07-25 DOI:10.35378/gujs.1471707
Zeynep Kamile Cenk, Güneş Mutlu Avinç, Semra Arslan Selçuk
{"title":"在建筑围护结构设计中应用仿生策略以实现集水","authors":"Zeynep Kamile Cenk, Güneş Mutlu Avinç, Semra Arslan Selçuk","doi":"10.35378/gujs.1471707","DOIUrl":null,"url":null,"abstract":"Nature is a database that offers potential solutions to humanity’s many problems with its countless living species and their developed adaptations. As in engineering, medicine, agriculture, etc., innovative approaches are sought in the discipline of architecture with the solution proposals offered by nature. Designers looking for creative solutions, especially in producing the most effective constructions with the most materials, providing energy efficiency in built environments, designing ecologically and harvesting water and developing methods that imitate and learn from nature. One of the main actors in the global agenda on climate change and the clean water problem is built environments. In this context, water harvesting methods to be developed through architectural design also emerge as one of the current research topics. In this paper, research has been conducted on how the water harvesting knowledge in nature can be integrated into architecture; A biomimetic shell proposal has been developed to provide atmospheric water gain. Firstly, the concept of biomimetics is clarified through a literature review and examples of water balance strategies of living things in nature are presented. Then, architectural examples inspired by these strategies are analyzed. The selected living organisms were analyzed in the field study section and a design concept that can harvest water on the building facade was developed based on the biological information obtained. Inspired by the water harvesting principles of cactus and Bromeliaceae plants, this design is presented as an alternative for water harvesting with different usage possibilities in built environments.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Of Biomimetic Strategies In Building Envelope Design For Water Harvesting\",\"authors\":\"Zeynep Kamile Cenk, Güneş Mutlu Avinç, Semra Arslan Selçuk\",\"doi\":\"10.35378/gujs.1471707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nature is a database that offers potential solutions to humanity’s many problems with its countless living species and their developed adaptations. As in engineering, medicine, agriculture, etc., innovative approaches are sought in the discipline of architecture with the solution proposals offered by nature. Designers looking for creative solutions, especially in producing the most effective constructions with the most materials, providing energy efficiency in built environments, designing ecologically and harvesting water and developing methods that imitate and learn from nature. One of the main actors in the global agenda on climate change and the clean water problem is built environments. In this context, water harvesting methods to be developed through architectural design also emerge as one of the current research topics. In this paper, research has been conducted on how the water harvesting knowledge in nature can be integrated into architecture; A biomimetic shell proposal has been developed to provide atmospheric water gain. Firstly, the concept of biomimetics is clarified through a literature review and examples of water balance strategies of living things in nature are presented. Then, architectural examples inspired by these strategies are analyzed. The selected living organisms were analyzed in the field study section and a design concept that can harvest water on the building facade was developed based on the biological information obtained. Inspired by the water harvesting principles of cactus and Bromeliaceae plants, this design is presented as an alternative for water harvesting with different usage possibilities in built environments.\",\"PeriodicalId\":12615,\"journal\":{\"name\":\"gazi university journal of science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"gazi university journal of science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35378/gujs.1471707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1471707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大自然是一个数据库,它以其无数的生物物种及其发达的适应能力,为人类的诸多问题提供了潜在的解决方案。与工程、医学、农业等领域一样,建筑学科也在利用大自然提供的解决方案寻求创新方法。设计师们正在寻找创造性的解决方案,特别是在用最多的材料建造最有效的建筑、提高建筑环境的能效、生态设计、收集水资源以及开发模仿和学习大自然的方法等方面。气候变化和清洁水问题全球议程的主要参与者之一是建筑环境。在这种情况下,通过建筑设计开发集水方法也成为当前的研究课题之一。本文研究了如何将自然界的集水知识融入建筑设计;提出了一种生物仿生外壳方案,以提供大气增水。首先,通过文献综述阐明了生物仿生学的概念,并举例说明了自然界中生物的水分平衡策略。然后,分析了受这些策略启发的建筑实例。在实地研究部分,对所选生物进行了分析,并根据所获得的生物信息,提出了一种可在建筑外立面集水的设计理念。受仙人掌和凤梨科植物集水原理的启发,这一设计被作为建筑环境中不同用途集水的替代方案而提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application Of Biomimetic Strategies In Building Envelope Design For Water Harvesting
Nature is a database that offers potential solutions to humanity’s many problems with its countless living species and their developed adaptations. As in engineering, medicine, agriculture, etc., innovative approaches are sought in the discipline of architecture with the solution proposals offered by nature. Designers looking for creative solutions, especially in producing the most effective constructions with the most materials, providing energy efficiency in built environments, designing ecologically and harvesting water and developing methods that imitate and learn from nature. One of the main actors in the global agenda on climate change and the clean water problem is built environments. In this context, water harvesting methods to be developed through architectural design also emerge as one of the current research topics. In this paper, research has been conducted on how the water harvesting knowledge in nature can be integrated into architecture; A biomimetic shell proposal has been developed to provide atmospheric water gain. Firstly, the concept of biomimetics is clarified through a literature review and examples of water balance strategies of living things in nature are presented. Then, architectural examples inspired by these strategies are analyzed. The selected living organisms were analyzed in the field study section and a design concept that can harvest water on the building facade was developed based on the biological information obtained. Inspired by the water harvesting principles of cactus and Bromeliaceae plants, this design is presented as an alternative for water harvesting with different usage possibilities in built environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
gazi university journal of science
gazi university journal of science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
11.10%
发文量
87
期刊介绍: The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.
期刊最新文献
Application Of Biomimetic Strategies In Building Envelope Design For Water Harvesting Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review Hybrid Deep Learning Model for Earthquake Time Prediction Expression patterns of eighteen genes involved in crucial cellular processes in the TP53 pathway in Multiple Myeloma Effects of Mechanical Milling and FAST Sintering on Mg Powders: Microstructural Analysis and Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1