北大西洋从海洋到大气的十年多变性:作为桥梁的扰动势能

IF 4.8 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Pub Date : 2024-07-23 DOI:10.1175/jcli-d-24-0025.1
Hongyuan Zhao, Jianping Li, Yuan Liu, Emerson Delarme, Ning Wang
{"title":"北大西洋从海洋到大气的十年多变性:作为桥梁的扰动势能","authors":"Hongyuan Zhao, Jianping Li, Yuan Liu, Emerson Delarme, Ning Wang","doi":"10.1175/jcli-d-24-0025.1","DOIUrl":null,"url":null,"abstract":"\nThe North Atlantic Ocean forcings are considered an important origin of the North Atlantic atmospheric multidecadal variability. Here we reveal the energetics mechanisms of the phenomenon using the perturbation potential energy (PPE) theory. Supporting the previous model studies, a cyclic pattern involving the Atlantic multidecadal oscillation (AMO) and North Atlantic tripole (NAT) is observed: positive AMO phase (AMO+, similarly hereafter) →NAT−→AMO−→NAT+, with a phase lag of approximately 15~20 years. An atmospheric mode characterized by basin-scale sea level pressure anomaly in the North Atlantic is associated with the AMO, which is termed the North Atlantic uniformity (NAU). The AMO+ induces positive uniform PPE anomalies over the ocean through precipitation heating, leading to decreased energy conversion to perturbation kinetic energy (PKE) and a large-scale anomalous cyclone. For the NAT+, tripolar precipitation anomalies result in tripolar PPE anomalies. Anomalous energy conversions occur where the PPE anomaly gradient is large, explained by an energy balance derived from thermal wind relationship. The PKE around 15°N and 50°N (25°N and 75°N) increases (decreases), forming the anomalous anticyclone and cyclone at subtropical and subpolar region, respectively, known as the North Atlantic Oscillation (NAO). The reverse holds for the NAT− and AMO−. As the phases of the ocean modes alternate, the energetics induce the NAU−, NAO−, NAU+, and NAO+ sequentially. In the multidecadal cycle, the accumulated energetics process is related to delayed effect, and the difference in variance explanation between the NAU and NAO is attributed to the feedback mechanisms.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidecadal variability from ocean to atmosphere in the North Atlantic: Perturbation potential energy as the bridge\",\"authors\":\"Hongyuan Zhao, Jianping Li, Yuan Liu, Emerson Delarme, Ning Wang\",\"doi\":\"10.1175/jcli-d-24-0025.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe North Atlantic Ocean forcings are considered an important origin of the North Atlantic atmospheric multidecadal variability. Here we reveal the energetics mechanisms of the phenomenon using the perturbation potential energy (PPE) theory. Supporting the previous model studies, a cyclic pattern involving the Atlantic multidecadal oscillation (AMO) and North Atlantic tripole (NAT) is observed: positive AMO phase (AMO+, similarly hereafter) →NAT−→AMO−→NAT+, with a phase lag of approximately 15~20 years. An atmospheric mode characterized by basin-scale sea level pressure anomaly in the North Atlantic is associated with the AMO, which is termed the North Atlantic uniformity (NAU). The AMO+ induces positive uniform PPE anomalies over the ocean through precipitation heating, leading to decreased energy conversion to perturbation kinetic energy (PKE) and a large-scale anomalous cyclone. For the NAT+, tripolar precipitation anomalies result in tripolar PPE anomalies. Anomalous energy conversions occur where the PPE anomaly gradient is large, explained by an energy balance derived from thermal wind relationship. The PKE around 15°N and 50°N (25°N and 75°N) increases (decreases), forming the anomalous anticyclone and cyclone at subtropical and subpolar region, respectively, known as the North Atlantic Oscillation (NAO). The reverse holds for the NAT− and AMO−. As the phases of the ocean modes alternate, the energetics induce the NAU−, NAO−, NAU+, and NAO+ sequentially. In the multidecadal cycle, the accumulated energetics process is related to delayed effect, and the difference in variance explanation between the NAU and NAO is attributed to the feedback mechanisms.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-24-0025.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-24-0025.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

北大西洋海洋强迫被认为是北大西洋大气十年多变性的重要起源。在此,我们利用扰动势能(PPE)理论揭示了这一现象的能量机制。与之前的模式研究相吻合,我们观测到了大西洋多年代振荡(AMO)和北大西洋三极(NAT)的周期模式:AMO正相(AMO+,以下同)→NAT-→AMO-→NAT+,相位滞后约15~20年。以北大西洋海盆尺度海平面气压异常为特征的大气模式与 AMO 有关,称为北大西洋均匀性(NAU)。AMO+ 通过降水加热在海洋上空诱发正的均匀 PPE 异常,导致能量转换为扰动动能(PKE)的减少和大尺度异常气旋。对于 NAT+,三极降水异常导致三极 PPE 异常。在 PPE 异常梯度较大的地方会出现异常能量转换,这可以用热风关系得出的能量平衡来解释。15°N 和 50°N (25°N 和 75°N)附近的 PKE 增加(减少),分别在副热带和副极地地区形成异常反气旋和气旋,即北大西洋涛动(NAO)。北大西洋涛动和南大西洋涛动的情况正好相反。随着海洋模式相位的交替,能量依次引起 NAU-、NAO-、NAU+ 和 NAO+。在多年代周期中,能量累积过程与延迟效应有关,NAU 和 NAO 之间的差异解释归因于反馈机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidecadal variability from ocean to atmosphere in the North Atlantic: Perturbation potential energy as the bridge
The North Atlantic Ocean forcings are considered an important origin of the North Atlantic atmospheric multidecadal variability. Here we reveal the energetics mechanisms of the phenomenon using the perturbation potential energy (PPE) theory. Supporting the previous model studies, a cyclic pattern involving the Atlantic multidecadal oscillation (AMO) and North Atlantic tripole (NAT) is observed: positive AMO phase (AMO+, similarly hereafter) →NAT−→AMO−→NAT+, with a phase lag of approximately 15~20 years. An atmospheric mode characterized by basin-scale sea level pressure anomaly in the North Atlantic is associated with the AMO, which is termed the North Atlantic uniformity (NAU). The AMO+ induces positive uniform PPE anomalies over the ocean through precipitation heating, leading to decreased energy conversion to perturbation kinetic energy (PKE) and a large-scale anomalous cyclone. For the NAT+, tripolar precipitation anomalies result in tripolar PPE anomalies. Anomalous energy conversions occur where the PPE anomaly gradient is large, explained by an energy balance derived from thermal wind relationship. The PKE around 15°N and 50°N (25°N and 75°N) increases (decreases), forming the anomalous anticyclone and cyclone at subtropical and subpolar region, respectively, known as the North Atlantic Oscillation (NAO). The reverse holds for the NAT− and AMO−. As the phases of the ocean modes alternate, the energetics induce the NAU−, NAO−, NAU+, and NAO+ sequentially. In the multidecadal cycle, the accumulated energetics process is related to delayed effect, and the difference in variance explanation between the NAU and NAO is attributed to the feedback mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate
Journal of Climate 地学-气象与大气科学
CiteScore
9.30
自引率
14.30%
发文量
490
审稿时长
7.5 months
期刊介绍: The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.
期刊最新文献
Reconstruction of historical site-scale dust optical depth (DOD) time series from surface dust records and satellite retrievals in northern China: application to the evaluation of DOD in CMIP6 historical simulations Revisiting the role of atmospheric initial signals in predicting ENSO Changes of the SST seasonal cycle in a warmer North Pacific without ocean dynamical feedbacks Cross-time scale analysis of year-round atmospheric circulation patterns and their impacts on rainfall and temperatures in the Iberian Peninsula Clusters of Regional Precipitation Seasonality Change in the Community Earth System Model version 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1