{"title":"气溶胶喷印水性银墨的工艺配方和功能电路性能","authors":"Pradeep Lall, Sabina Bimali, Scott Miller","doi":"10.1115/1.4066041","DOIUrl":null,"url":null,"abstract":"\n The demand for compact, lightweight, and stretchable printed electric circuits has increased with the advancement of flexible printing technology in electronics. The viability of environmentally friendly water-based inks with low-impact waste requires the development of process recipes for component attachment on flexible substrates. The focus of this paper is on demonstrating a comprehensive study of process parameters and component attachment on the aerosol jet printer (AJP) platform, utilizing water-based silver nanoparticle ink. The investigation covers printing parameters, including UAMFC, SMFC, stage speed, multiple passes, and sintering analysis (time and temperature). Evaluation of print quality is conducted using white light interferometry (WLI) and optical microscopy images. The cross-sectional area (CSA) of printed lines is computed by integrating the bell-shaped CSA obtained from the WLI test. Electrical and mechanical properties are quantified in terms of resistivity and shear load to failure. Optimized parameters from the printing and sintering process are employed to print traces, and various components are attached using Electrically Conductive Adhesive (ECA). The impact of sustainable ink and ECA on passive components is analyzed by comparing their performance before and after attachment. Components within an acceptable range of the rated value are in proper functioning order, contributing to the advancement of flexible and sustainable electronics. Finally, a practical differentiator circuit has been used to demonstrate the functionally working circuitry and compared the output with the simulated one.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Recipe and Functional Circuitry Performance On Aerosol Jet Printed Water-Based Silver Ink\",\"authors\":\"Pradeep Lall, Sabina Bimali, Scott Miller\",\"doi\":\"10.1115/1.4066041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The demand for compact, lightweight, and stretchable printed electric circuits has increased with the advancement of flexible printing technology in electronics. The viability of environmentally friendly water-based inks with low-impact waste requires the development of process recipes for component attachment on flexible substrates. The focus of this paper is on demonstrating a comprehensive study of process parameters and component attachment on the aerosol jet printer (AJP) platform, utilizing water-based silver nanoparticle ink. The investigation covers printing parameters, including UAMFC, SMFC, stage speed, multiple passes, and sintering analysis (time and temperature). Evaluation of print quality is conducted using white light interferometry (WLI) and optical microscopy images. The cross-sectional area (CSA) of printed lines is computed by integrating the bell-shaped CSA obtained from the WLI test. Electrical and mechanical properties are quantified in terms of resistivity and shear load to failure. Optimized parameters from the printing and sintering process are employed to print traces, and various components are attached using Electrically Conductive Adhesive (ECA). The impact of sustainable ink and ECA on passive components is analyzed by comparing their performance before and after attachment. Components within an acceptable range of the rated value are in proper functioning order, contributing to the advancement of flexible and sustainable electronics. Finally, a practical differentiator circuit has been used to demonstrate the functionally working circuitry and compared the output with the simulated one.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4066041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4066041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Process Recipe and Functional Circuitry Performance On Aerosol Jet Printed Water-Based Silver Ink
The demand for compact, lightweight, and stretchable printed electric circuits has increased with the advancement of flexible printing technology in electronics. The viability of environmentally friendly water-based inks with low-impact waste requires the development of process recipes for component attachment on flexible substrates. The focus of this paper is on demonstrating a comprehensive study of process parameters and component attachment on the aerosol jet printer (AJP) platform, utilizing water-based silver nanoparticle ink. The investigation covers printing parameters, including UAMFC, SMFC, stage speed, multiple passes, and sintering analysis (time and temperature). Evaluation of print quality is conducted using white light interferometry (WLI) and optical microscopy images. The cross-sectional area (CSA) of printed lines is computed by integrating the bell-shaped CSA obtained from the WLI test. Electrical and mechanical properties are quantified in terms of resistivity and shear load to failure. Optimized parameters from the printing and sintering process are employed to print traces, and various components are attached using Electrically Conductive Adhesive (ECA). The impact of sustainable ink and ECA on passive components is analyzed by comparing their performance before and after attachment. Components within an acceptable range of the rated value are in proper functioning order, contributing to the advancement of flexible and sustainable electronics. Finally, a practical differentiator circuit has been used to demonstrate the functionally working circuitry and compared the output with the simulated one.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.