Jessica Harsono, Joseph P. Kozak, Hala Tomey, William Yerkes, Jonathan Neville
{"title":"对流冷却在深空运行的电力电子设备","authors":"Jessica Harsono, Joseph P. Kozak, Hala Tomey, William Yerkes, Jonathan Neville","doi":"10.1115/1.4065947","DOIUrl":null,"url":null,"abstract":"\n Since most traditional spacecraft are designed to operate in a vacuum environment, forced convection cooling has seen limited use in space-applications. This paper considers an ideal candidate–the Dragonfly Lander, a rotorcraft being sent into Deep-space to conduct experiments on Saturn's largest moon, Titan. A forced convection based thermal management solution is presented for the Rotor Drive Electronics (RDE) unit, a high-power electronics box responsible for controlling the rotors that allow the Lander to fly on Titan. A thermal flow model was built in Solidworks Flow Simulation to evaluate the effectiveness of a fan system integrated into the packaging design and used as the primary method for cooling the RDE. The model was validated with temperature data collected from custom designed ground support equipment. It was found that utilizing forced convection allows temperatures of the electronics within the tightly packaged RDE to remain within operational limits when conductive and radiative heat transfer alone are insufficient. Titan's dense atmosphere results in greater mass flow rates through fans compared to on Earth, making forced convection a particularly efficient method of heat transfer. This research may guide the use of forced convection in future space missions, or non-traditional environments.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convection Cooling of Power Electronics Operating in Deep-Space\",\"authors\":\"Jessica Harsono, Joseph P. Kozak, Hala Tomey, William Yerkes, Jonathan Neville\",\"doi\":\"10.1115/1.4065947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Since most traditional spacecraft are designed to operate in a vacuum environment, forced convection cooling has seen limited use in space-applications. This paper considers an ideal candidate–the Dragonfly Lander, a rotorcraft being sent into Deep-space to conduct experiments on Saturn's largest moon, Titan. A forced convection based thermal management solution is presented for the Rotor Drive Electronics (RDE) unit, a high-power electronics box responsible for controlling the rotors that allow the Lander to fly on Titan. A thermal flow model was built in Solidworks Flow Simulation to evaluate the effectiveness of a fan system integrated into the packaging design and used as the primary method for cooling the RDE. The model was validated with temperature data collected from custom designed ground support equipment. It was found that utilizing forced convection allows temperatures of the electronics within the tightly packaged RDE to remain within operational limits when conductive and radiative heat transfer alone are insufficient. Titan's dense atmosphere results in greater mass flow rates through fans compared to on Earth, making forced convection a particularly efficient method of heat transfer. This research may guide the use of forced convection in future space missions, or non-traditional environments.\",\"PeriodicalId\":15663,\"journal\":{\"name\":\"Journal of Electronic Packaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Packaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065947\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065947","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Convection Cooling of Power Electronics Operating in Deep-Space
Since most traditional spacecraft are designed to operate in a vacuum environment, forced convection cooling has seen limited use in space-applications. This paper considers an ideal candidate–the Dragonfly Lander, a rotorcraft being sent into Deep-space to conduct experiments on Saturn's largest moon, Titan. A forced convection based thermal management solution is presented for the Rotor Drive Electronics (RDE) unit, a high-power electronics box responsible for controlling the rotors that allow the Lander to fly on Titan. A thermal flow model was built in Solidworks Flow Simulation to evaluate the effectiveness of a fan system integrated into the packaging design and used as the primary method for cooling the RDE. The model was validated with temperature data collected from custom designed ground support equipment. It was found that utilizing forced convection allows temperatures of the electronics within the tightly packaged RDE to remain within operational limits when conductive and radiative heat transfer alone are insufficient. Titan's dense atmosphere results in greater mass flow rates through fans compared to on Earth, making forced convection a particularly efficient method of heat transfer. This research may guide the use of forced convection in future space missions, or non-traditional environments.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.