使用三拼接分布建立带极值的数据模型

Axioms Pub Date : 2024-07-13 DOI:10.3390/axioms13070473
Adrian Bâcă, Raluca Vernic
{"title":"使用三拼接分布建立带极值的数据模型","authors":"Adrian Bâcă, Raluca Vernic","doi":"10.3390/axioms13070473","DOIUrl":null,"url":null,"abstract":"When data exhibit a high frequency of small to medium values and a low frequency of large values, fitting a classical distribution might fail. This is why spliced models defined from different distributions on distinct intervals are proposed in the literature. In contrast to the intensive study of two-spliced distributions, the case with more than two components is scarcely approached. In this paper, we focus on three-spliced distributions and on their ability to improve the modeling of extreme data. For this purpose, we consider a popular insurance data set related to Danish fire losses, to which we fit several three-spliced distributions; moreover, the results are compared to the best-fitted two-spliced distributions from previous studies.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Data with Extreme Values Using Three-Spliced Distributions\",\"authors\":\"Adrian Bâcă, Raluca Vernic\",\"doi\":\"10.3390/axioms13070473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When data exhibit a high frequency of small to medium values and a low frequency of large values, fitting a classical distribution might fail. This is why spliced models defined from different distributions on distinct intervals are proposed in the literature. In contrast to the intensive study of two-spliced distributions, the case with more than two components is scarcely approached. In this paper, we focus on three-spliced distributions and on their ability to improve the modeling of extreme data. For this purpose, we consider a popular insurance data set related to Danish fire losses, to which we fit several three-spliced distributions; moreover, the results are compared to the best-fitted two-spliced distributions from previous studies.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当数据显示中小数值频率高而大数值频率低时,拟合经典分布可能会失败。因此,文献中提出了由不同区间的不同分布定义的拼接模型。与对双拼接分布的深入研究相比,本文很少涉及两个以上分量的情况。在本文中,我们将重点研究三拼接分布及其改进极端数据建模的能力。为此,我们考虑了一个与丹麦火灾损失相关的流行保险数据集,并对其拟合了多个三拼接分布;此外,我们还将拟合结果与之前研究中的最佳二拼接分布进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Data with Extreme Values Using Three-Spliced Distributions
When data exhibit a high frequency of small to medium values and a low frequency of large values, fitting a classical distribution might fail. This is why spliced models defined from different distributions on distinct intervals are proposed in the literature. In contrast to the intensive study of two-spliced distributions, the case with more than two components is scarcely approached. In this paper, we focus on three-spliced distributions and on their ability to improve the modeling of extreme data. For this purpose, we consider a popular insurance data set related to Danish fire losses, to which we fit several three-spliced distributions; moreover, the results are compared to the best-fitted two-spliced distributions from previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry of Torsion Gerbes and Flat Twisted Vector Bundles The Unified Description of Abstract Convexity Structures Modelling Up-and-Down Moves of Binomial Option Pricing with Intuitionistic Fuzzy Numbers The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds On Lebesgue Constants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1