Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi
{"title":"氢对单晶奥氏体不锈钢变形和滑移定位的影响","authors":"Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi","doi":"10.1016/j.ijplas.2024.104074","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (<span><math><mo>></mo></math></span>1 <span><math><mi>mm</mi></math></span>), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For <span><math><mrow><mo>〈</mo><mn>110</mn><mo>〉</mo></mrow></math></span> tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104074"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen effects on the deformation and slip localization in a single crystal austenitic stainless steel\",\"authors\":\"Fernando D. León-Cázares , Xiaowang Zhou , Brian Kagay , Joshua D. Sugar , Coleman Alleman , Joseph Ronevich , Chris San Marchi\",\"doi\":\"10.1016/j.ijplas.2024.104074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (<span><math><mo>></mo></math></span>1 <span><math><mi>mm</mi></math></span>), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For <span><math><mrow><mo>〈</mo><mn>110</mn><mo>〉</mo></mrow></math></span> tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"180 \",\"pages\":\"Article 104074\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002018\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Hydrogen effects on the deformation and slip localization in a single crystal austenitic stainless steel
Hydrogen is known to embrittle austenitic stainless steels, which are widely used in high-pressure hydrogen storage and delivery systems, but the mechanisms that lead to such material degradation are still being elucidated. The current work investigates the deformation behavior of single crystal austenitic stainless steel 316L through combined uniaxial tensile testing, characterization and atomistic simulations. Thermally precharged hydrogen is shown to increase the critical resolved shear stress (CRSS) without previously reported deviations from Schmid’s law. Molecular dynamics simulations further expose the statistical nature of the hydrogen and vacancy contributions to the CRSS in the presence of alloying. Slip distribution quantification over large in-plane distances (1 ), achieved via atomic force microscopy (AFM), highlights the role of hydrogen increasing the degree of slip localization in both single and multiple slip configurations. The most active slip bands accumulate significantly more deformation in hydrogen precharged specimens, with potential implications for damage nucleation. For tensile loading, slip localization further enhances the activity of secondary slip, increases the density of geometrically necessary dislocations and leads to a distinct lattice rotation behavior compared to hydrogen-free specimens, as evidenced by electron backscatter diffraction (EBSD) maps. The results of this study provide a more comprehensive picture of the deformation aspect of hydrogen embrittlement in austenitic stainless steels.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.