Aaron C. Meyer;Daniel J. Breton;Matthew J. Kamrath;Sergey N. Vecherin
{"title":"大城市射频噪声场的空间结构","authors":"Aaron C. Meyer;Daniel J. Breton;Matthew J. Kamrath;Sergey N. Vecherin","doi":"10.1029/2023RS007909","DOIUrl":null,"url":null,"abstract":"The urban radio-frequency (RF) noise generated by our cities continues to change with time. Although models exist to describe the RF noise as functions of frequency and urban land use types, very few models describe the spatial character or structure of the noise on the scales of city blocks (50–150 m). The goal of this work is to investigate the connection between urban morphology and the higher-order spatial statistics of the noise field. To achieve this goal, a large measurement campaign was conducted in Boston, Massachusetts. Many spatial measurements allowed for calculation of spatial correlation functions of noise power in three different neighborhoods, which were used to quantify the spatial structure of the fields. A statistical point source model is then developed, with adjustable parameters relating to urban morphology. Good agreement between the model and the experimental correlation functions suggests the 25 MHz urban noise field is well described by a random network of fixed point sources, radiating with a 1/r power law behavior.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 7","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial structure of the radio-frequency noise field in a large city\",\"authors\":\"Aaron C. Meyer;Daniel J. Breton;Matthew J. Kamrath;Sergey N. Vecherin\",\"doi\":\"10.1029/2023RS007909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The urban radio-frequency (RF) noise generated by our cities continues to change with time. Although models exist to describe the RF noise as functions of frequency and urban land use types, very few models describe the spatial character or structure of the noise on the scales of city blocks (50–150 m). The goal of this work is to investigate the connection between urban morphology and the higher-order spatial statistics of the noise field. To achieve this goal, a large measurement campaign was conducted in Boston, Massachusetts. Many spatial measurements allowed for calculation of spatial correlation functions of noise power in three different neighborhoods, which were used to quantify the spatial structure of the fields. A statistical point source model is then developed, with adjustable parameters relating to urban morphology. Good agreement between the model and the experimental correlation functions suggests the 25 MHz urban noise field is well described by a random network of fixed point sources, radiating with a 1/r power law behavior.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 7\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10622032/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10622032/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Spatial structure of the radio-frequency noise field in a large city
The urban radio-frequency (RF) noise generated by our cities continues to change with time. Although models exist to describe the RF noise as functions of frequency and urban land use types, very few models describe the spatial character or structure of the noise on the scales of city blocks (50–150 m). The goal of this work is to investigate the connection between urban morphology and the higher-order spatial statistics of the noise field. To achieve this goal, a large measurement campaign was conducted in Boston, Massachusetts. Many spatial measurements allowed for calculation of spatial correlation functions of noise power in three different neighborhoods, which were used to quantify the spatial structure of the fields. A statistical point source model is then developed, with adjustable parameters relating to urban morphology. Good agreement between the model and the experimental correlation functions suggests the 25 MHz urban noise field is well described by a random network of fixed point sources, radiating with a 1/r power law behavior.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.