Lori Magruder, Ann Rackley Reese, Aimée Gibbons, James Dietrich, Tom Neumann
{"title":"ICESat-2 星载飞行接收器算法:在轨参数更新对科学驱动观测的影响","authors":"Lori Magruder, Ann Rackley Reese, Aimée Gibbons, James Dietrich, Tom Neumann","doi":"10.1029/2024EA003551","DOIUrl":null,"url":null,"abstract":"<p>The ICESat-2 (Ice, Cloud and Land Elevation Satellite-2) photon-counting laser altimeter technology required the design and development of very sophisticated onboard algorithms to collect, store and downlink the observations. These algorithms utilize both software and hardware solutions for meeting data volume requirements and optimizing the science achievable via ICESat-2 measurements. Careful planning and dedicated development were accomplished during the pre-launch phase of the mission in preparation for the 2018 launch. Once on-orbit all of the systems and subsystems were evaluated for performance, including the receiver algorithms, to ensure compliance with mission standards and satisfy the mission science objectives. As the mission has progressed and the instrument performance and data volumes were better understood, there have been several opportunities to enhance ICESat-2's contributions to Earth observation science initiated by NASA and the ICESat-2 science community. We highlight multiple updates to the flight receiver algorithms, the onboard software for signal processing, that have extended ICESat-2's data capabilities and allowed for advanced science applications beyond the original mission objectives.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003551","citationCount":"0","resultStr":"{\"title\":\"ICESat-2 Onboard Flight Receiver Algorithms: On-Orbit Parameter Updates the Impact on Science Driven Observations\",\"authors\":\"Lori Magruder, Ann Rackley Reese, Aimée Gibbons, James Dietrich, Tom Neumann\",\"doi\":\"10.1029/2024EA003551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ICESat-2 (Ice, Cloud and Land Elevation Satellite-2) photon-counting laser altimeter technology required the design and development of very sophisticated onboard algorithms to collect, store and downlink the observations. These algorithms utilize both software and hardware solutions for meeting data volume requirements and optimizing the science achievable via ICESat-2 measurements. Careful planning and dedicated development were accomplished during the pre-launch phase of the mission in preparation for the 2018 launch. Once on-orbit all of the systems and subsystems were evaluated for performance, including the receiver algorithms, to ensure compliance with mission standards and satisfy the mission science objectives. As the mission has progressed and the instrument performance and data volumes were better understood, there have been several opportunities to enhance ICESat-2's contributions to Earth observation science initiated by NASA and the ICESat-2 science community. We highlight multiple updates to the flight receiver algorithms, the onboard software for signal processing, that have extended ICESat-2's data capabilities and allowed for advanced science applications beyond the original mission objectives.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003551\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003551\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003551","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
ICESat-2 Onboard Flight Receiver Algorithms: On-Orbit Parameter Updates the Impact on Science Driven Observations
The ICESat-2 (Ice, Cloud and Land Elevation Satellite-2) photon-counting laser altimeter technology required the design and development of very sophisticated onboard algorithms to collect, store and downlink the observations. These algorithms utilize both software and hardware solutions for meeting data volume requirements and optimizing the science achievable via ICESat-2 measurements. Careful planning and dedicated development were accomplished during the pre-launch phase of the mission in preparation for the 2018 launch. Once on-orbit all of the systems and subsystems were evaluated for performance, including the receiver algorithms, to ensure compliance with mission standards and satisfy the mission science objectives. As the mission has progressed and the instrument performance and data volumes were better understood, there have been several opportunities to enhance ICESat-2's contributions to Earth observation science initiated by NASA and the ICESat-2 science community. We highlight multiple updates to the flight receiver algorithms, the onboard software for signal processing, that have extended ICESat-2's data capabilities and allowed for advanced science applications beyond the original mission objectives.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.