Yajie Song , Xue Sun , Shuaifeng Lou , Fei Sun , Jiajun Wang
{"title":"缓解续航焦虑:固态电池和极速充电","authors":"Yajie Song , Xue Sun , Shuaifeng Lou , Fei Sun , Jiajun Wang","doi":"10.1016/j.pmatsci.2024.101339","DOIUrl":null,"url":null,"abstract":"<div><p>Extreme fast charging (XFC) is one of the most direct means to improve the competitiveness of electric vehicles (EVs) against gasoline vehicles in terms of mileage covered per unit of time (including time to replenish power source). Solid-state batteries (SSBs) with high energy density are more capable of addressing the challenges of range anxiety and XFC safety than traditional lithium-ion batteries (LIBs). However, inadequate interfacial contact, lithium intrusion, and high tortuosity of Li<sup>+</sup>/e<sup>-</sup> transport limit the performance of SSBs at high current densities. In this review, we comprehensively explore the multi-layered mechanisms that restrict the XFC capability of SSBs and analyze possible attempts to enhance the acceptable charging current density. We also highlight the unique role of coupled strategies of state-of-the-art characterization techniques and numerical simulation, as well as intelligent charging protocols in addressing the XFC challenges for SSBs. In addition, we systematically summarise the latest achievements of battery companies in developing fast-charging SSBs. Finally, we present several potential strategies for the future development of fast-charging SSBs to alleviate range anxiety and realise the vision of EV ubiquity.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101339"},"PeriodicalIF":33.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001087/pdfft?md5=df44def2eefdbbfee7c8db7bf5c9ffa5&pid=1-s2.0-S0079642524001087-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alleviating range anxiety: Solid-state batteries and extreme fast charging\",\"authors\":\"Yajie Song , Xue Sun , Shuaifeng Lou , Fei Sun , Jiajun Wang\",\"doi\":\"10.1016/j.pmatsci.2024.101339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extreme fast charging (XFC) is one of the most direct means to improve the competitiveness of electric vehicles (EVs) against gasoline vehicles in terms of mileage covered per unit of time (including time to replenish power source). Solid-state batteries (SSBs) with high energy density are more capable of addressing the challenges of range anxiety and XFC safety than traditional lithium-ion batteries (LIBs). However, inadequate interfacial contact, lithium intrusion, and high tortuosity of Li<sup>+</sup>/e<sup>-</sup> transport limit the performance of SSBs at high current densities. In this review, we comprehensively explore the multi-layered mechanisms that restrict the XFC capability of SSBs and analyze possible attempts to enhance the acceptable charging current density. We also highlight the unique role of coupled strategies of state-of-the-art characterization techniques and numerical simulation, as well as intelligent charging protocols in addressing the XFC challenges for SSBs. In addition, we systematically summarise the latest achievements of battery companies in developing fast-charging SSBs. Finally, we present several potential strategies for the future development of fast-charging SSBs to alleviate range anxiety and realise the vision of EV ubiquity.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"147 \",\"pages\":\"Article 101339\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001087/pdfft?md5=df44def2eefdbbfee7c8db7bf5c9ffa5&pid=1-s2.0-S0079642524001087-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001087\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Alleviating range anxiety: Solid-state batteries and extreme fast charging
Extreme fast charging (XFC) is one of the most direct means to improve the competitiveness of electric vehicles (EVs) against gasoline vehicles in terms of mileage covered per unit of time (including time to replenish power source). Solid-state batteries (SSBs) with high energy density are more capable of addressing the challenges of range anxiety and XFC safety than traditional lithium-ion batteries (LIBs). However, inadequate interfacial contact, lithium intrusion, and high tortuosity of Li+/e- transport limit the performance of SSBs at high current densities. In this review, we comprehensively explore the multi-layered mechanisms that restrict the XFC capability of SSBs and analyze possible attempts to enhance the acceptable charging current density. We also highlight the unique role of coupled strategies of state-of-the-art characterization techniques and numerical simulation, as well as intelligent charging protocols in addressing the XFC challenges for SSBs. In addition, we systematically summarise the latest achievements of battery companies in developing fast-charging SSBs. Finally, we present several potential strategies for the future development of fast-charging SSBs to alleviate range anxiety and realise the vision of EV ubiquity.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.