Yishuo Jiang , Shuaiming Su , Shuxuan Zhao , Ray Y. Zhong , Waishan Qiu , Miroslaw J. Skibniewski , Ioannis Brilakis , George Q. Huang
{"title":"数字双胞胎支持同步施工管理:从建筑 4.0 到未来展望的路线图","authors":"Yishuo Jiang , Shuaiming Su , Shuxuan Zhao , Ray Y. Zhong , Waishan Qiu , Miroslaw J. Skibniewski , Ioannis Brilakis , George Q. Huang","doi":"10.1016/j.dibe.2024.100512","DOIUrl":null,"url":null,"abstract":"<div><p>Information and automation technologies play a pivotal role in achieving cyber-physical integration within Construction 4.0. In this transformed landscape, the evolution of the construction management paradigm carefully considers the enhancement of business models and organizational structures to prioritize stakeholders’ well-being, environmental sustainability, and heightened resilience. A significant challenge lies in effectively managing and coordinating a myriad of multi-source and heterogeneous entities using information and automation technologies. The key obstacle is synchronizing these elements based on cyber-physical interoperation to optimize multiple objectives seamlessly. Hence synchronization emerges as a crucial factor for orchestrating and sustaining harmonious relationships among multiple entities or activities within a delimited spatial-temporal framework. This ensures seamless and aligned coordination throughout dynamic processes. Therefore, this paper presents a strategic roadmap for the synchronized construction management, derived from a thorough analysis of fundamental elements in Construction 4.0, aimed at advancing the current construction management practices. Moreover, to articulate this synchronization approach systematically, an Orthogonally Synchronized Digital Twin (SDT) model with regular expression is formulated, built upon the proposed roadmap for reshaped construction management. This study provides valuable insights for stakeholders in the construction industry, including architects, engineers, project managers, and policymakers. The findings guide decision-making on digital twin adoption in construction, supporting practitioners to enhance efficiency and improve outcomes, offering a roadmap for industry advancement towards human-centrality, sustainability, and resilience. Future research should focus on validating the proposed roadmap and SDT model in real-world scenarios, exploring synergies between AI and digital twins, and investigating advanced technologies for holistic smart cities management.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100512"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001935/pdfft?md5=7525334b0429d92abde2d5ffe9efa014&pid=1-s2.0-S2666165924001935-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Digital twin-enabled synchronized construction management: A roadmap from construction 4.0 towards future prospect\",\"authors\":\"Yishuo Jiang , Shuaiming Su , Shuxuan Zhao , Ray Y. Zhong , Waishan Qiu , Miroslaw J. Skibniewski , Ioannis Brilakis , George Q. Huang\",\"doi\":\"10.1016/j.dibe.2024.100512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Information and automation technologies play a pivotal role in achieving cyber-physical integration within Construction 4.0. In this transformed landscape, the evolution of the construction management paradigm carefully considers the enhancement of business models and organizational structures to prioritize stakeholders’ well-being, environmental sustainability, and heightened resilience. A significant challenge lies in effectively managing and coordinating a myriad of multi-source and heterogeneous entities using information and automation technologies. The key obstacle is synchronizing these elements based on cyber-physical interoperation to optimize multiple objectives seamlessly. Hence synchronization emerges as a crucial factor for orchestrating and sustaining harmonious relationships among multiple entities or activities within a delimited spatial-temporal framework. This ensures seamless and aligned coordination throughout dynamic processes. Therefore, this paper presents a strategic roadmap for the synchronized construction management, derived from a thorough analysis of fundamental elements in Construction 4.0, aimed at advancing the current construction management practices. Moreover, to articulate this synchronization approach systematically, an Orthogonally Synchronized Digital Twin (SDT) model with regular expression is formulated, built upon the proposed roadmap for reshaped construction management. This study provides valuable insights for stakeholders in the construction industry, including architects, engineers, project managers, and policymakers. The findings guide decision-making on digital twin adoption in construction, supporting practitioners to enhance efficiency and improve outcomes, offering a roadmap for industry advancement towards human-centrality, sustainability, and resilience. Future research should focus on validating the proposed roadmap and SDT model in real-world scenarios, exploring synergies between AI and digital twins, and investigating advanced technologies for holistic smart cities management.</p></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":\"19 \",\"pages\":\"Article 100512\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001935/pdfft?md5=7525334b0429d92abde2d5ffe9efa014&pid=1-s2.0-S2666165924001935-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001935\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001935","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Digital twin-enabled synchronized construction management: A roadmap from construction 4.0 towards future prospect
Information and automation technologies play a pivotal role in achieving cyber-physical integration within Construction 4.0. In this transformed landscape, the evolution of the construction management paradigm carefully considers the enhancement of business models and organizational structures to prioritize stakeholders’ well-being, environmental sustainability, and heightened resilience. A significant challenge lies in effectively managing and coordinating a myriad of multi-source and heterogeneous entities using information and automation technologies. The key obstacle is synchronizing these elements based on cyber-physical interoperation to optimize multiple objectives seamlessly. Hence synchronization emerges as a crucial factor for orchestrating and sustaining harmonious relationships among multiple entities or activities within a delimited spatial-temporal framework. This ensures seamless and aligned coordination throughout dynamic processes. Therefore, this paper presents a strategic roadmap for the synchronized construction management, derived from a thorough analysis of fundamental elements in Construction 4.0, aimed at advancing the current construction management practices. Moreover, to articulate this synchronization approach systematically, an Orthogonally Synchronized Digital Twin (SDT) model with regular expression is formulated, built upon the proposed roadmap for reshaped construction management. This study provides valuable insights for stakeholders in the construction industry, including architects, engineers, project managers, and policymakers. The findings guide decision-making on digital twin adoption in construction, supporting practitioners to enhance efficiency and improve outcomes, offering a roadmap for industry advancement towards human-centrality, sustainability, and resilience. Future research should focus on validating the proposed roadmap and SDT model in real-world scenarios, exploring synergies between AI and digital twins, and investigating advanced technologies for holistic smart cities management.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.