{"title":"锂离子电池在热失控过程中的微粒诱发电弧排气装置","authors":"Cheng Li, Hewu Wang, Yalun Li, Languang Lu","doi":"10.1016/j.etran.2024.100350","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal runaway of lithium-ion batteries will release a large amount of particles with elevated temperature and high velocity, probably resulting in arc failures. In this study, we adopted an 117Ah fully-charged prismatic battery with Li(Ni<sub>0</sub><sub>.</sub><sub>8</sub>Co<sub>0</sub><sub>.</sub><sub>1</sub>Mn<sub>0.1</sub>)O<sub>2</sub> cathode to collect the vented particles in an inert atmosphere after thermal runaway. All settled particles were classified into six groups to investigate the influence of electrode spacing, particle size and load resistance on the critical breakdown voltage as well as arc characteristics. As a result, a novel breakdown arc failure called venting particle-induced arc was firstly revealed and verified in the battery system. These settled particles significantly decrease the critical breakdown voltage for arc failure. The critical breakdown voltage exhibits a positively quadratic correlation with electrode spacing within 1–8 mm, while it is negatively correlated with particle sizes. Furthermore, a critical voltage map for breakdown arc under various particle sizes and electrode spacing was proposed. The results provide guidance to electrical hazards prevention in the battery system.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100350"},"PeriodicalIF":15.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Venting particle-induced arc of lithium-ion batteries during the thermal runaway\",\"authors\":\"Cheng Li, Hewu Wang, Yalun Li, Languang Lu\",\"doi\":\"10.1016/j.etran.2024.100350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal runaway of lithium-ion batteries will release a large amount of particles with elevated temperature and high velocity, probably resulting in arc failures. In this study, we adopted an 117Ah fully-charged prismatic battery with Li(Ni<sub>0</sub><sub>.</sub><sub>8</sub>Co<sub>0</sub><sub>.</sub><sub>1</sub>Mn<sub>0.1</sub>)O<sub>2</sub> cathode to collect the vented particles in an inert atmosphere after thermal runaway. All settled particles were classified into six groups to investigate the influence of electrode spacing, particle size and load resistance on the critical breakdown voltage as well as arc characteristics. As a result, a novel breakdown arc failure called venting particle-induced arc was firstly revealed and verified in the battery system. These settled particles significantly decrease the critical breakdown voltage for arc failure. The critical breakdown voltage exhibits a positively quadratic correlation with electrode spacing within 1–8 mm, while it is negatively correlated with particle sizes. Furthermore, a critical voltage map for breakdown arc under various particle sizes and electrode spacing was proposed. The results provide guidance to electrical hazards prevention in the battery system.</p></div>\",\"PeriodicalId\":36355,\"journal\":{\"name\":\"Etransportation\",\"volume\":\"22 \",\"pages\":\"Article 100350\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Etransportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590116824000407\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000407","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Venting particle-induced arc of lithium-ion batteries during the thermal runaway
Thermal runaway of lithium-ion batteries will release a large amount of particles with elevated temperature and high velocity, probably resulting in arc failures. In this study, we adopted an 117Ah fully-charged prismatic battery with Li(Ni0.8Co0.1Mn0.1)O2 cathode to collect the vented particles in an inert atmosphere after thermal runaway. All settled particles were classified into six groups to investigate the influence of electrode spacing, particle size and load resistance on the critical breakdown voltage as well as arc characteristics. As a result, a novel breakdown arc failure called venting particle-induced arc was firstly revealed and verified in the battery system. These settled particles significantly decrease the critical breakdown voltage for arc failure. The critical breakdown voltage exhibits a positively quadratic correlation with electrode spacing within 1–8 mm, while it is negatively correlated with particle sizes. Furthermore, a critical voltage map for breakdown arc under various particle sizes and electrode spacing was proposed. The results provide guidance to electrical hazards prevention in the battery system.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.