Corentin Artaud, Varuna De-Silva, Rafael Pina, Xiyu Shi
{"title":"从多代理强化学习的参数空间生成神经架构","authors":"Corentin Artaud, Varuna De-Silva, Rafael Pina, Xiyu Shi","doi":"10.1016/j.patrec.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, <em>returns</em> – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 272-278"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167865524002162/pdfft?md5=9d36e1cb3980d40cb66497131a82ff52&pid=1-s2.0-S0167865524002162-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generating neural architectures from parameter spaces for multi-agent reinforcement learning\",\"authors\":\"Corentin Artaud, Varuna De-Silva, Rafael Pina, Xiyu Shi\",\"doi\":\"10.1016/j.patrec.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, <em>returns</em> – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 272-278\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002162/pdfft?md5=9d36e1cb3980d40cb66497131a82ff52&pid=1-s2.0-S0167865524002162-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002162\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Generating neural architectures from parameter spaces for multi-agent reinforcement learning
We explore a data-driven approach to generating neural network parameters to determine whether generative models can capture the underlying distribution of a collection of neural network checkpoints. We compile a dataset of checkpoints from neural networks trained within the multi-agent reinforcement learning framework, thus potentially producing previously unseen combinations of neural network parameters. In particular, our generative model is a conditional transformer-based variational autoencoder that, when provided with random noise and a specified performance metric – in our context, returns – predicts the appropriate distribution over the parameter space to achieve the desired performance metric. Our method successfully generates parameters for a specified optimal return without further fine-tuning. We also show that the parameters generated using this approach are more constrained and less variable and, most importantly, perform on par with those trained directly under the multi-agent reinforcement learning framework. We test our method on the neural network architectures commonly employed in the most advanced state-of-the-art algorithms.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.