物联网支持的异构 WSN 中用于能量平衡的随机簇头选择模型

Q4 Engineering Measurement Sensors Pub Date : 2024-07-16 DOI:10.1016/j.measen.2024.101282
R. Anto Pravin , K. Murugan , C. Thiripurasundari , Prasanna Ranjith Christodoss , R. Puviarasi , Syed Ismail Abdul Lathif
{"title":"物联网支持的异构 WSN 中用于能量平衡的随机簇头选择模型","authors":"R. Anto Pravin ,&nbsp;K. Murugan ,&nbsp;C. Thiripurasundari ,&nbsp;Prasanna Ranjith Christodoss ,&nbsp;R. Puviarasi ,&nbsp;Syed Ismail Abdul Lathif","doi":"10.1016/j.measen.2024.101282","DOIUrl":null,"url":null,"abstract":"<div><p>Energy dissipation is the most important design limitation for Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs). In order to prolong the life of WSNs, the energy of nodes must be used in an effective way. Clustering is a strategy that may effectively use the energy of the sensors, extending the life and scalability by managing the network load balance. The energy usage for network operation is reduced by using an evolutionary algorithm called Genetic Algorithm (GA). The Stochastic Cluster Head Selection Model (SCHSM) is described in the proposed protocol by taking the factors such as distance, node energy, density and capacity of nodes for developing the fitness function. The proposed protocol is designed for multiple movable sink nodes and this greatly improves the energy balancing factor in the network. For minimizing the communication gap among sensors and sinks, movable sinks can be placed carefully. Simulation results are analyzed for the system effectiveness.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101282"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002587/pdfft?md5=38ff83f4be2c5ec4478c1aa989ffded6&pid=1-s2.0-S2665917424002587-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stochastic cluster head selection model for energy balancing in IoT enabled heterogeneous WSN\",\"authors\":\"R. Anto Pravin ,&nbsp;K. Murugan ,&nbsp;C. Thiripurasundari ,&nbsp;Prasanna Ranjith Christodoss ,&nbsp;R. Puviarasi ,&nbsp;Syed Ismail Abdul Lathif\",\"doi\":\"10.1016/j.measen.2024.101282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy dissipation is the most important design limitation for Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs). In order to prolong the life of WSNs, the energy of nodes must be used in an effective way. Clustering is a strategy that may effectively use the energy of the sensors, extending the life and scalability by managing the network load balance. The energy usage for network operation is reduced by using an evolutionary algorithm called Genetic Algorithm (GA). The Stochastic Cluster Head Selection Model (SCHSM) is described in the proposed protocol by taking the factors such as distance, node energy, density and capacity of nodes for developing the fitness function. The proposed protocol is designed for multiple movable sink nodes and this greatly improves the energy balancing factor in the network. For minimizing the communication gap among sensors and sinks, movable sinks can be placed carefully. Simulation results are analyzed for the system effectiveness.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"35 \",\"pages\":\"Article 101282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002587/pdfft?md5=38ff83f4be2c5ec4478c1aa989ffded6&pid=1-s2.0-S2665917424002587-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

对于支持物联网(IoT)的无线传感器网络(WSN)来说,能量耗散是最重要的设计限制。为了延长 WSN 的寿命,必须有效利用节点的能量。集群是一种可以有效利用传感器能量的策略,通过管理网络负载平衡来延长寿命和可扩展性。使用一种名为遗传算法(GA)的进化算法,可以减少网络运行的能量消耗。拟议协议中采用了随机簇头选择模型(SCHSM),通过考虑节点的距离、节点能量、密度和容量等因素来开发适配函数。提议的协议是为多个可移动的汇节点设计的,这大大提高了网络中的能量平衡因素。为了最大限度地减少传感器和汇之间的通信间隙,可移动汇的布置可以非常谨慎。仿真结果分析了系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic cluster head selection model for energy balancing in IoT enabled heterogeneous WSN

Energy dissipation is the most important design limitation for Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs). In order to prolong the life of WSNs, the energy of nodes must be used in an effective way. Clustering is a strategy that may effectively use the energy of the sensors, extending the life and scalability by managing the network load balance. The energy usage for network operation is reduced by using an evolutionary algorithm called Genetic Algorithm (GA). The Stochastic Cluster Head Selection Model (SCHSM) is described in the proposed protocol by taking the factors such as distance, node energy, density and capacity of nodes for developing the fitness function. The proposed protocol is designed for multiple movable sink nodes and this greatly improves the energy balancing factor in the network. For minimizing the communication gap among sensors and sinks, movable sinks can be placed carefully. Simulation results are analyzed for the system effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Augmented and virtual reality based segmentation algorithm for human pose detection in wearable cameras Exploring EEG-Based biomarkers for improved early Alzheimer's disease detection: A feature-based approach utilizing machine learning Deep learning model for smart wearables device to detect human health conduction Review and analysis on numerical simulation and compact modeling of InGaZno thin-film transistor for display SENSOR applications Artificial intelligence and IoT driven system architecture for municipality waste management in smart cities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1