利用创新输入数据和 ANN 模型预测西班牙大气中的总β放射性

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Pollution Research Pub Date : 2024-07-26 DOI:10.1016/j.apr.2024.102264
Abdelhamid Nouayti , I. Berriban , E. Chham , M. Azahra , H. Satti , Mohamed Drissi El-Bouzaidi , R. Yerrou , A. Arectout , Hanan Ziani , T. El Bardouni , J.A.G. Orza , L. Tositti , I. Ben Maimoun , M.A. Ferro-García
{"title":"利用创新输入数据和 ANN 模型预测西班牙大气中的总β放射性","authors":"Abdelhamid Nouayti ,&nbsp;I. Berriban ,&nbsp;E. Chham ,&nbsp;M. Azahra ,&nbsp;H. Satti ,&nbsp;Mohamed Drissi El-Bouzaidi ,&nbsp;R. Yerrou ,&nbsp;A. Arectout ,&nbsp;Hanan Ziani ,&nbsp;T. El Bardouni ,&nbsp;J.A.G. Orza ,&nbsp;L. Tositti ,&nbsp;I. Ben Maimoun ,&nbsp;M.A. Ferro-García","doi":"10.1016/j.apr.2024.102264","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a new methodology aimed at predicting gross <span><math><mi>β</mi></math></span> levels in the atmosphere. The methodology incorporates input data consisting of local meteorological and synoptic variables, alongside temporal lags and residence time of air masses, to predict gross <span><math><mi>β</mi></math></span> activity concentration in the atmosphere. Weekly measurements conducted between January 2006 and December 2017 at various sampling sites across diverse locations with different climatic and geographical conditions in Spain were utilized. A high-performance Artificial Neural Network (ANN) model was constructed for this purpose. Across all locations, strong linear relationships are evident between predicted and actual values, with correlation coefficients (R) ranging from 0.86 to 0.92. Higher R values indicate a more robust correlation. Additionally, R-squared values, ranging from 0.7320 to 0.8502, further affirm the model’s ability to explain a significant proportion of the variance in gross <span><math><mi>β</mi></math></span> activity. Moreover, the relatively low Mean Squared Error (MSE) values, spanning from 0.00966 to 0.11115, and Mean Absolute Error (MAE) values, ranging from 0.08176 to 0.11747, underscore the model’s accuracy in gross <span><math><mi>β</mi></math></span> activity prediction. The predictive capabilities of the models are robustly demonstrated, showcasing promising results. According to the results of the sensitivity analysis, the category of synoptic parameters has the most important influence on the prediction of atmospheric <span><math><mi>β</mi></math></span> radioactivity levels, namely air temperature, potential temperature and relative humidity. Regarding the residence time of the air masses, the periods spent over land or water have the most effect on gross <span><math><mi>β</mi></math></span> levels.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 11","pages":"Article 102264"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing innovative input data and ANN modeling to predict atmospheric gross beta radioactivity in Spain\",\"authors\":\"Abdelhamid Nouayti ,&nbsp;I. Berriban ,&nbsp;E. Chham ,&nbsp;M. Azahra ,&nbsp;H. Satti ,&nbsp;Mohamed Drissi El-Bouzaidi ,&nbsp;R. Yerrou ,&nbsp;A. Arectout ,&nbsp;Hanan Ziani ,&nbsp;T. El Bardouni ,&nbsp;J.A.G. Orza ,&nbsp;L. Tositti ,&nbsp;I. Ben Maimoun ,&nbsp;M.A. Ferro-García\",\"doi\":\"10.1016/j.apr.2024.102264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a new methodology aimed at predicting gross <span><math><mi>β</mi></math></span> levels in the atmosphere. The methodology incorporates input data consisting of local meteorological and synoptic variables, alongside temporal lags and residence time of air masses, to predict gross <span><math><mi>β</mi></math></span> activity concentration in the atmosphere. Weekly measurements conducted between January 2006 and December 2017 at various sampling sites across diverse locations with different climatic and geographical conditions in Spain were utilized. A high-performance Artificial Neural Network (ANN) model was constructed for this purpose. Across all locations, strong linear relationships are evident between predicted and actual values, with correlation coefficients (R) ranging from 0.86 to 0.92. Higher R values indicate a more robust correlation. Additionally, R-squared values, ranging from 0.7320 to 0.8502, further affirm the model’s ability to explain a significant proportion of the variance in gross <span><math><mi>β</mi></math></span> activity. Moreover, the relatively low Mean Squared Error (MSE) values, spanning from 0.00966 to 0.11115, and Mean Absolute Error (MAE) values, ranging from 0.08176 to 0.11747, underscore the model’s accuracy in gross <span><math><mi>β</mi></math></span> activity prediction. The predictive capabilities of the models are robustly demonstrated, showcasing promising results. According to the results of the sensitivity analysis, the category of synoptic parameters has the most important influence on the prediction of atmospheric <span><math><mi>β</mi></math></span> radioactivity levels, namely air temperature, potential temperature and relative humidity. Regarding the residence time of the air masses, the periods spent over land or water have the most effect on gross <span><math><mi>β</mi></math></span> levels.</p></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":\"15 11\",\"pages\":\"Article 102264\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104224002290\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002290","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种旨在预测大气中总β水平的新方法。该方法结合了由当地气象和同步变量组成的输入数据,以及气团的时滞和停留时间,来预测大气中的总β活动浓度。研究利用了 2006 年 1 月至 2017 年 12 月期间在西班牙不同气候和地理条件的多个采样点进行的每周测量。为此构建了一个高性能人工神经网络(ANN)模型。在所有地点,预测值和实际值之间都存在明显的线性关系,相关系数(R)在 0.86 到 0.92 之间。R 值越高,表示相关性越强。此外,R 平方值从 0.7320 到 0.8502 不等,进一步证实了该模型有能力解释总 β 活动的很大一部分变异。此外,相对较低的平均平方误差(MSE)值(从 0.00966 到 0.11115)和平均绝对误差(MAE)值(从 0.08176 到 0.11747)也凸显了模型在预测总β活动方面的准确性。模型的预测能力得到了有力的证明,展示了良好的结果。根据敏感性分析结果,对大气 β 放射性水平预测影响最大的是天气参数,即气温、势温和相对湿度。关于气团的停留时间,在陆地或水面上停留的时间对总β水平的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing innovative input data and ANN modeling to predict atmospheric gross beta radioactivity in Spain

This study introduces a new methodology aimed at predicting gross β levels in the atmosphere. The methodology incorporates input data consisting of local meteorological and synoptic variables, alongside temporal lags and residence time of air masses, to predict gross β activity concentration in the atmosphere. Weekly measurements conducted between January 2006 and December 2017 at various sampling sites across diverse locations with different climatic and geographical conditions in Spain were utilized. A high-performance Artificial Neural Network (ANN) model was constructed for this purpose. Across all locations, strong linear relationships are evident between predicted and actual values, with correlation coefficients (R) ranging from 0.86 to 0.92. Higher R values indicate a more robust correlation. Additionally, R-squared values, ranging from 0.7320 to 0.8502, further affirm the model’s ability to explain a significant proportion of the variance in gross β activity. Moreover, the relatively low Mean Squared Error (MSE) values, spanning from 0.00966 to 0.11115, and Mean Absolute Error (MAE) values, ranging from 0.08176 to 0.11747, underscore the model’s accuracy in gross β activity prediction. The predictive capabilities of the models are robustly demonstrated, showcasing promising results. According to the results of the sensitivity analysis, the category of synoptic parameters has the most important influence on the prediction of atmospheric β radioactivity levels, namely air temperature, potential temperature and relative humidity. Regarding the residence time of the air masses, the periods spent over land or water have the most effect on gross β levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
期刊最新文献
Editorial Board Concurrent measurements of atmospheric Hg in outdoor and indoor at a megacity in Southeast Asia: First insights from the region Investigating the role of photochemistry and impact of regional and local contributions on gaseous pollutant concentrations (NO, NO2, O3, CO, and SO2) at urban and suburban sites Sensitivity of AERMOD (V21112) RLINEXT dispersion model outputs by source type to variability in single noise barrier height and separation distance Carbonaceous aerosol emissions from secondary lighting sources: Emission factors and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1