Wei Zhang , Ruwei Chen , Yuhang Dai , Xian Wu , Jie Chen , Wei Zong , Mengtian Zhang , Zijuan Du , Haobo Dong , Fangjia Zhao , Hang Yang , Joanna Borowiec , Zhenming Xu , Zheng Li , Mingqiang Liu , Guanjie He , Ivan P. Parkin
{"title":"不对称受体-供体小有机分子实现了多功能、高稳定性的水性锌电池","authors":"Wei Zhang , Ruwei Chen , Yuhang Dai , Xian Wu , Jie Chen , Wei Zong , Mengtian Zhang , Zijuan Du , Haobo Dong , Fangjia Zhao , Hang Yang , Joanna Borowiec , Zhenming Xu , Zheng Li , Mingqiang Liu , Guanjie He , Ivan P. Parkin","doi":"10.1016/j.mattod.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn<sup>2+</sup> solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can <em>in-situ</em> form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0<!--> <!-->0<!--> <!-->2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO<sub>2</sub>, activated carbon and conversion-type I<sub>2</sub> (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I<sub>2</sub> pouch cell with NMU also presents good cycling stability over 1100 cycles.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 32-45"},"PeriodicalIF":21.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369702124001251/pdfft?md5=dfa2a05735d3244adfc27fc47682654f&pid=1-s2.0-S1369702124001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymmetric acceptor–donor small organic molecule enabling versatile and highly-stable aqueous zinc batteries\",\"authors\":\"Wei Zhang , Ruwei Chen , Yuhang Dai , Xian Wu , Jie Chen , Wei Zong , Mengtian Zhang , Zijuan Du , Haobo Dong , Fangjia Zhao , Hang Yang , Joanna Borowiec , Zhenming Xu , Zheng Li , Mingqiang Liu , Guanjie He , Ivan P. Parkin\",\"doi\":\"10.1016/j.mattod.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn<sup>2+</sup> solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can <em>in-situ</em> form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0<!--> <!-->0<!--> <!-->2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO<sub>2</sub>, activated carbon and conversion-type I<sub>2</sub> (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I<sub>2</sub> pouch cell with NMU also presents good cycling stability over 1100 cycles.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"78 \",\"pages\":\"Pages 32-45\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001251/pdfft?md5=dfa2a05735d3244adfc27fc47682654f&pid=1-s2.0-S1369702124001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001251\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymmetric acceptor–donor small organic molecule enabling versatile and highly-stable aqueous zinc batteries
Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn2+ solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can in-situ form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0 0 2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO2, activated carbon and conversion-type I2 (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I2 pouch cell with NMU also presents good cycling stability over 1100 cycles.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.