不对称受体-供体小有机分子实现了多功能、高稳定性的水性锌电池

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-09-01 DOI:10.1016/j.mattod.2024.06.016
Wei Zhang , Ruwei Chen , Yuhang Dai , Xian Wu , Jie Chen , Wei Zong , Mengtian Zhang , Zijuan Du , Haobo Dong , Fangjia Zhao , Hang Yang , Joanna Borowiec , Zhenming Xu , Zheng Li , Mingqiang Liu , Guanjie He , Ivan P. Parkin
{"title":"不对称受体-供体小有机分子实现了多功能、高稳定性的水性锌电池","authors":"Wei Zhang ,&nbsp;Ruwei Chen ,&nbsp;Yuhang Dai ,&nbsp;Xian Wu ,&nbsp;Jie Chen ,&nbsp;Wei Zong ,&nbsp;Mengtian Zhang ,&nbsp;Zijuan Du ,&nbsp;Haobo Dong ,&nbsp;Fangjia Zhao ,&nbsp;Hang Yang ,&nbsp;Joanna Borowiec ,&nbsp;Zhenming Xu ,&nbsp;Zheng Li ,&nbsp;Mingqiang Liu ,&nbsp;Guanjie He ,&nbsp;Ivan P. Parkin","doi":"10.1016/j.mattod.2024.06.016","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn<sup>2+</sup> solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can <em>in-situ</em> form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0<!--> <!-->0<!--> <!-->2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO<sub>2</sub>, activated carbon and conversion-type I<sub>2</sub> (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I<sub>2</sub> pouch cell with NMU also presents good cycling stability over 1100 cycles.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"78 ","pages":"Pages 32-45"},"PeriodicalIF":21.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369702124001251/pdfft?md5=dfa2a05735d3244adfc27fc47682654f&pid=1-s2.0-S1369702124001251-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Asymmetric acceptor–donor small organic molecule enabling versatile and highly-stable aqueous zinc batteries\",\"authors\":\"Wei Zhang ,&nbsp;Ruwei Chen ,&nbsp;Yuhang Dai ,&nbsp;Xian Wu ,&nbsp;Jie Chen ,&nbsp;Wei Zong ,&nbsp;Mengtian Zhang ,&nbsp;Zijuan Du ,&nbsp;Haobo Dong ,&nbsp;Fangjia Zhao ,&nbsp;Hang Yang ,&nbsp;Joanna Borowiec ,&nbsp;Zhenming Xu ,&nbsp;Zheng Li ,&nbsp;Mingqiang Liu ,&nbsp;Guanjie He ,&nbsp;Ivan P. Parkin\",\"doi\":\"10.1016/j.mattod.2024.06.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn<sup>2+</sup> solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can <em>in-situ</em> form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0<!--> <!-->0<!--> <!-->2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO<sub>2</sub>, activated carbon and conversion-type I<sub>2</sub> (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I<sub>2</sub> pouch cell with NMU also presents good cycling stability over 1100 cycles.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"78 \",\"pages\":\"Pages 32-45\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001251/pdfft?md5=dfa2a05735d3244adfc27fc47682654f&pid=1-s2.0-S1369702124001251-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001251\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌水电池(AZBs)有望用于大规模储能。然而,严重的副反应和锌枝晶的生长是一项挑战。"盐中水 "和有机/水混合电解质解决了这些问题,但却损害了高离子电导率、卓越的安全性、低成本和良好的可持续性。在此,我们提出了一种不对称的受体-供体小有机分子(NMU),以在不影响 AZB 优点的情况下促进锌阳极的发展。研究发现,NMU 分子能改变 H 键网络并重建 Zn2+ 溶胶鞘。此外,NMU 添加剂往往会被 Zn 表面吸收,从而建立一个贫水的电双层,并能在原位形成一个坚固的固态电解质相间层,从而保护 Zn 阳极。Zn (0 0 2) 平面主要由 NMU 引导。因此,使用 NMU 的 Zn||Zn 电池的寿命可维持 3000 小时以上,Zn||Cu 电池在 1800 次循环中的平均库仑效率达到 99.7%。此外,我们的策略还可应用于采用二氧化锰、活性炭和转化型 I2 阴极的高稳定性多功能全电池(在 10,000 次循环中容量保持率为 92.5%)。采用 NMU 的 Zn||I2 袋式电池在 1100 次循环中也表现出良好的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetric acceptor–donor small organic molecule enabling versatile and highly-stable aqueous zinc batteries

Aqueous zinc batteries (AZBs) are promising for large-scale energy storage. However, severe side reactions and Zn dendrite growth are challenging. “Water-in-salt” and organic/aqueous hybrid electrolytes address these problems but compromise the high ionic conductivity, superior safety, low cost, and good sustainability. Herein, an asymmetric acceptor–donor small organic molecule (NMU) is proposed to boost Zn anodes without compromising the advantages of AZBs. It is found that NMU molecules alter the H-bonding network and reconstruct Zn2+ solvation sheath. Besides, NMU additives tend to be absorbed on the Zn surface to build a water-poor electrical double layer and can in-situ form a robust solid-electrolyte interphase layer that protects the Zn anode. The Zn (0 0 2) plane can be predominately guided by NMU. Consequently, the lifespan of the Zn||Zn cell using NMU can maintain over 3000 h and the average Coulombic efficiency of the Zn||Cu cell reaches 99.7 % throughout 1800 cycles. Additionally, our strategy can be applied in highly-stable and versatile full cells with MnO2, activated carbon and conversion-type I2 (capacity retention: 92.5 % throughout 10,000 cycles) cathodes under practical electrode ratios. The Zn||I2 pouch cell with NMU also presents good cycling stability over 1100 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1