Hieronymus Hein , Marco Kaiser , Vanessa Lind-Tueysuez , Johannes May , Tomas Nicak , Florian Obermeier , Ralf Tiete
{"title":"在应用优化断裂力学方法进行核反应堆安全评估时考虑特殊效应(摄像)","authors":"Hieronymus Hein , Marco Kaiser , Vanessa Lind-Tueysuez , Johannes May , Tomas Nicak , Florian Obermeier , Ralf Tiete","doi":"10.1016/j.ijpvp.2024.105267","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive fracture mechanics test program called CAMERA was carried out for seven RPV base and weld materials in unirradiated and irradiated conditions. The objective was to establish an application-oriented completion of the fracture mechanics approach for the RPV safety assessment over the entire relevant temperature range up to operating temperature. For this purpose, fracture toughness tests in the ductile-brittle transition region with and without warm pre-stress (WPS), and in the ductile region (upper shelf) were performed in order to complete the fracture toughness curves of the material concerned. The test program was completed by various analytical and numerical calculations and microstructural analyses. The benefit of the WPS effect was confirmed for both the material (higher apparent fracture toughness values) and the load path (no initiation after maximum loading). By fracture toughness tests in the ductile regime the fracture toughness curve could be completed up to the operating temperature and the T<sub>0</sub> based criterion temperature T<sub>US</sub> above which no brittle fracture occurs was determined and successfully verified. Based on the results obtained by the Master Curve, WPS and crack resistance tests it was demonstrated how to integrate the criterion temperature T<sub>US</sub> in the fracture toughness-temperature diagram including the loading transient to an application window for the RPV safety assessment that is based on T<sub>0</sub> only. For three out of nineteen data sets the homogeneity screening procedure described in ASTM E1921 did indicate a macroscopically inhomogeneous material for that a generally conservative reference temperature T<sub>0IN</sub> was calculated that is on average 11 K higher than the reference temperature T<sub>0</sub>. A higher susceptibility of weld materials for macroscopic material inhomogeneity compared to base materials was found. The suitability of the applied SE(B) and C(T) specimens for the specific fracture mechanics tests (WPS and/or crack resistance in ductile region) was proven. Micromechanical Local Approach damage models (Bordet and Gurson) were successfully applied for test design and prediction of fracture toughness. The overall results reveal even so some open gaps remaining for future work that are addressed as well.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105267"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consideration of special effects for the application of an optimized fracture mechanics approach for the RPV safety assessment (CAMERA)\",\"authors\":\"Hieronymus Hein , Marco Kaiser , Vanessa Lind-Tueysuez , Johannes May , Tomas Nicak , Florian Obermeier , Ralf Tiete\",\"doi\":\"10.1016/j.ijpvp.2024.105267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A comprehensive fracture mechanics test program called CAMERA was carried out for seven RPV base and weld materials in unirradiated and irradiated conditions. The objective was to establish an application-oriented completion of the fracture mechanics approach for the RPV safety assessment over the entire relevant temperature range up to operating temperature. For this purpose, fracture toughness tests in the ductile-brittle transition region with and without warm pre-stress (WPS), and in the ductile region (upper shelf) were performed in order to complete the fracture toughness curves of the material concerned. The test program was completed by various analytical and numerical calculations and microstructural analyses. The benefit of the WPS effect was confirmed for both the material (higher apparent fracture toughness values) and the load path (no initiation after maximum loading). By fracture toughness tests in the ductile regime the fracture toughness curve could be completed up to the operating temperature and the T<sub>0</sub> based criterion temperature T<sub>US</sub> above which no brittle fracture occurs was determined and successfully verified. Based on the results obtained by the Master Curve, WPS and crack resistance tests it was demonstrated how to integrate the criterion temperature T<sub>US</sub> in the fracture toughness-temperature diagram including the loading transient to an application window for the RPV safety assessment that is based on T<sub>0</sub> only. For three out of nineteen data sets the homogeneity screening procedure described in ASTM E1921 did indicate a macroscopically inhomogeneous material for that a generally conservative reference temperature T<sub>0IN</sub> was calculated that is on average 11 K higher than the reference temperature T<sub>0</sub>. A higher susceptibility of weld materials for macroscopic material inhomogeneity compared to base materials was found. The suitability of the applied SE(B) and C(T) specimens for the specific fracture mechanics tests (WPS and/or crack resistance in ductile region) was proven. Micromechanical Local Approach damage models (Bordet and Gurson) were successfully applied for test design and prediction of fracture toughness. The overall results reveal even so some open gaps remaining for future work that are addressed as well.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105267\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124001443\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001443","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Consideration of special effects for the application of an optimized fracture mechanics approach for the RPV safety assessment (CAMERA)
A comprehensive fracture mechanics test program called CAMERA was carried out for seven RPV base and weld materials in unirradiated and irradiated conditions. The objective was to establish an application-oriented completion of the fracture mechanics approach for the RPV safety assessment over the entire relevant temperature range up to operating temperature. For this purpose, fracture toughness tests in the ductile-brittle transition region with and without warm pre-stress (WPS), and in the ductile region (upper shelf) were performed in order to complete the fracture toughness curves of the material concerned. The test program was completed by various analytical and numerical calculations and microstructural analyses. The benefit of the WPS effect was confirmed for both the material (higher apparent fracture toughness values) and the load path (no initiation after maximum loading). By fracture toughness tests in the ductile regime the fracture toughness curve could be completed up to the operating temperature and the T0 based criterion temperature TUS above which no brittle fracture occurs was determined and successfully verified. Based on the results obtained by the Master Curve, WPS and crack resistance tests it was demonstrated how to integrate the criterion temperature TUS in the fracture toughness-temperature diagram including the loading transient to an application window for the RPV safety assessment that is based on T0 only. For three out of nineteen data sets the homogeneity screening procedure described in ASTM E1921 did indicate a macroscopically inhomogeneous material for that a generally conservative reference temperature T0IN was calculated that is on average 11 K higher than the reference temperature T0. A higher susceptibility of weld materials for macroscopic material inhomogeneity compared to base materials was found. The suitability of the applied SE(B) and C(T) specimens for the specific fracture mechanics tests (WPS and/or crack resistance in ductile region) was proven. Micromechanical Local Approach damage models (Bordet and Gurson) were successfully applied for test design and prediction of fracture toughness. The overall results reveal even so some open gaps remaining for future work that are addressed as well.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.