{"title":"透明质酸涂层对聚醚醚酮牙科种植体表面的影响:体外分析","authors":"Mohammed Aso Abdulghafor, Zanyar Mustafa Amin","doi":"10.1016/j.sdentj.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Polyether ether ketone (PEEK), a biocompatible polymer, is being explored as an alternative to metallic alloys for dental implants due to its aesthetic and mechanical properties. This study aimed to enhance the surface biofunctionality through evaluating human MG-63 osteoblastic cell survival, proliferation, differentiation, and mineralization.</div></div><div><h3>Method</h3><div>Following the sandblasting and plasma treatment of the 3D-printed PEEK discs, a layer of hyaluronic acid (Hya) was coated onto the PEEK surface. Osteoblast cells were seeded onto the discs. The groups consisted of Hya-coated PEEK, uncoated PEEK, and a control group. Cell viability, proliferation, differentiation, and mineralization potential were examined after seven and twenty-one days of cell seeding using the MTT test, DAPI staining technique, alkaline phosphatase activity (ALP), and alizarin red staining.</div></div><div><h3>Results</h3><div>Hya-coated PEEK increased cell viability (1.48 ± 0.13, 1.49 ± 0.09) compared to the uncoated group (1.19 ± 0.06, 1.26 ± 0.07) and control group (0.98 ± 0.04, 1.00 ± 0.07) after 7 and 21 days. Proliferation rates of coated group (60.50 ± 3.08) were greater than the uncoated (50.33 ± 2.58) and control group (38.33 ± 4.88) at 21 days, respectively. Additionally, the ALP activity on Hya-coated PEEK disks (5.55 ± 0.65, 7.54 ± 0.64) was notably higher than that of the uncoated group (1.08 ± 0.49, 2.59 ± 0.68), and control group (0.16 ± 0.09, 0.34 ± 0.18) at both time periods. Alizarin red staining in the Hya-coated PEEK group (1.81 ± 0.23, 1.97 ± 0.20) was significantly greater in comparison with uncoated group (1.12 ± 0.17, 1.14 ± 0.19) and control group (0.99 ± 0.10, 0.98 ± 0.05) at both time intervals.</div></div><div><h3>Conclusion</h3><div>Hya’s surface coating has enhanced the biofunctional properties of PEEK implant material, as demonstrated by improved cell survival, proliferation, differentiation, and mineralization potential.</div></div>","PeriodicalId":47246,"journal":{"name":"Saudi Dental Journal","volume":"36 10","pages":"Pages 1326-1332"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of hyaluronic acid coating on polyether ether ketone dental implant surface: An in vitro analysis\",\"authors\":\"Mohammed Aso Abdulghafor, Zanyar Mustafa Amin\",\"doi\":\"10.1016/j.sdentj.2024.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Polyether ether ketone (PEEK), a biocompatible polymer, is being explored as an alternative to metallic alloys for dental implants due to its aesthetic and mechanical properties. This study aimed to enhance the surface biofunctionality through evaluating human MG-63 osteoblastic cell survival, proliferation, differentiation, and mineralization.</div></div><div><h3>Method</h3><div>Following the sandblasting and plasma treatment of the 3D-printed PEEK discs, a layer of hyaluronic acid (Hya) was coated onto the PEEK surface. Osteoblast cells were seeded onto the discs. The groups consisted of Hya-coated PEEK, uncoated PEEK, and a control group. Cell viability, proliferation, differentiation, and mineralization potential were examined after seven and twenty-one days of cell seeding using the MTT test, DAPI staining technique, alkaline phosphatase activity (ALP), and alizarin red staining.</div></div><div><h3>Results</h3><div>Hya-coated PEEK increased cell viability (1.48 ± 0.13, 1.49 ± 0.09) compared to the uncoated group (1.19 ± 0.06, 1.26 ± 0.07) and control group (0.98 ± 0.04, 1.00 ± 0.07) after 7 and 21 days. Proliferation rates of coated group (60.50 ± 3.08) were greater than the uncoated (50.33 ± 2.58) and control group (38.33 ± 4.88) at 21 days, respectively. Additionally, the ALP activity on Hya-coated PEEK disks (5.55 ± 0.65, 7.54 ± 0.64) was notably higher than that of the uncoated group (1.08 ± 0.49, 2.59 ± 0.68), and control group (0.16 ± 0.09, 0.34 ± 0.18) at both time periods. Alizarin red staining in the Hya-coated PEEK group (1.81 ± 0.23, 1.97 ± 0.20) was significantly greater in comparison with uncoated group (1.12 ± 0.17, 1.14 ± 0.19) and control group (0.99 ± 0.10, 0.98 ± 0.05) at both time intervals.</div></div><div><h3>Conclusion</h3><div>Hya’s surface coating has enhanced the biofunctional properties of PEEK implant material, as demonstrated by improved cell survival, proliferation, differentiation, and mineralization potential.</div></div>\",\"PeriodicalId\":47246,\"journal\":{\"name\":\"Saudi Dental Journal\",\"volume\":\"36 10\",\"pages\":\"Pages 1326-1332\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Dental Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1013905224002098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Dental Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1013905224002098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
The impact of hyaluronic acid coating on polyether ether ketone dental implant surface: An in vitro analysis
Objective
Polyether ether ketone (PEEK), a biocompatible polymer, is being explored as an alternative to metallic alloys for dental implants due to its aesthetic and mechanical properties. This study aimed to enhance the surface biofunctionality through evaluating human MG-63 osteoblastic cell survival, proliferation, differentiation, and mineralization.
Method
Following the sandblasting and plasma treatment of the 3D-printed PEEK discs, a layer of hyaluronic acid (Hya) was coated onto the PEEK surface. Osteoblast cells were seeded onto the discs. The groups consisted of Hya-coated PEEK, uncoated PEEK, and a control group. Cell viability, proliferation, differentiation, and mineralization potential were examined after seven and twenty-one days of cell seeding using the MTT test, DAPI staining technique, alkaline phosphatase activity (ALP), and alizarin red staining.
Results
Hya-coated PEEK increased cell viability (1.48 ± 0.13, 1.49 ± 0.09) compared to the uncoated group (1.19 ± 0.06, 1.26 ± 0.07) and control group (0.98 ± 0.04, 1.00 ± 0.07) after 7 and 21 days. Proliferation rates of coated group (60.50 ± 3.08) were greater than the uncoated (50.33 ± 2.58) and control group (38.33 ± 4.88) at 21 days, respectively. Additionally, the ALP activity on Hya-coated PEEK disks (5.55 ± 0.65, 7.54 ± 0.64) was notably higher than that of the uncoated group (1.08 ± 0.49, 2.59 ± 0.68), and control group (0.16 ± 0.09, 0.34 ± 0.18) at both time periods. Alizarin red staining in the Hya-coated PEEK group (1.81 ± 0.23, 1.97 ± 0.20) was significantly greater in comparison with uncoated group (1.12 ± 0.17, 1.14 ± 0.19) and control group (0.99 ± 0.10, 0.98 ± 0.05) at both time intervals.
Conclusion
Hya’s surface coating has enhanced the biofunctional properties of PEEK implant material, as demonstrated by improved cell survival, proliferation, differentiation, and mineralization potential.
期刊介绍:
Saudi Dental Journal is an English language, peer-reviewed scholarly publication in the area of dentistry. Saudi Dental Journal publishes original research and reviews on, but not limited to: • dental disease • clinical trials • dental equipment • new and experimental techniques • epidemiology and oral health • restorative dentistry • periodontology • endodontology • prosthodontics • paediatric dentistry • orthodontics and dental education Saudi Dental Journal is the official publication of the Saudi Dental Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.