在肿瘤靶向给药系统中利用金属有机框架

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Science: Advanced Materials and Devices Pub Date : 2024-07-23 DOI:10.1016/j.jsamd.2024.100770
Jiahui Kong, Mengru Cai, Rongyue Zhu, Yongqiang Zhang, Yuji Du, Xiaohong Jing, Yufei Sun, Rongrong Chang, Changhai Qu, Xiaoxv Dong, Jian Ni, Xingbin Yin
{"title":"在肿瘤靶向给药系统中利用金属有机框架","authors":"Jiahui Kong,&nbsp;Mengru Cai,&nbsp;Rongyue Zhu,&nbsp;Yongqiang Zhang,&nbsp;Yuji Du,&nbsp;Xiaohong Jing,&nbsp;Yufei Sun,&nbsp;Rongrong Chang,&nbsp;Changhai Qu,&nbsp;Xiaoxv Dong,&nbsp;Jian Ni,&nbsp;Xingbin Yin","doi":"10.1016/j.jsamd.2024.100770","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the non-specific distribution of drugs in the body and the low concentration at the tumor site in traditional chemotherapy, there are challenges associated with significant side effects and tumor resistance. Therefore, a drug delivery system (DDS) urgently needs to be developed that can precisely target tumors. Metal-organic frameworks (MOFs) possess advantageous characteristics derived from organic and inorganic materials, including small particle size, large specific surface area, high drug loading capacity, adjustable structure and pore size, as well as ease of modification. Consequently, MOFs offer unique advantages for designing active targeting, passive targeting, and stimulus-responsive targeting strategies and have become a hot topic of current research on tumor-targeted drug delivery systems. This review will elaborate on the application of MOFs in tumor-targeted drug delivery systems from the perspective of different targeting strategies. We hope that this paper can provide assistance for tumor-targeted therapy.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 3","pages":"Article 100770"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924001011/pdfft?md5=80fde258d9ab4f5944194206d89b454a&pid=1-s2.0-S2468217924001011-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The utilization of metal-organic frameworks in tumor-targeted drug delivery systems\",\"authors\":\"Jiahui Kong,&nbsp;Mengru Cai,&nbsp;Rongyue Zhu,&nbsp;Yongqiang Zhang,&nbsp;Yuji Du,&nbsp;Xiaohong Jing,&nbsp;Yufei Sun,&nbsp;Rongrong Chang,&nbsp;Changhai Qu,&nbsp;Xiaoxv Dong,&nbsp;Jian Ni,&nbsp;Xingbin Yin\",\"doi\":\"10.1016/j.jsamd.2024.100770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the non-specific distribution of drugs in the body and the low concentration at the tumor site in traditional chemotherapy, there are challenges associated with significant side effects and tumor resistance. Therefore, a drug delivery system (DDS) urgently needs to be developed that can precisely target tumors. Metal-organic frameworks (MOFs) possess advantageous characteristics derived from organic and inorganic materials, including small particle size, large specific surface area, high drug loading capacity, adjustable structure and pore size, as well as ease of modification. Consequently, MOFs offer unique advantages for designing active targeting, passive targeting, and stimulus-responsive targeting strategies and have become a hot topic of current research on tumor-targeted drug delivery systems. This review will elaborate on the application of MOFs in tumor-targeted drug delivery systems from the perspective of different targeting strategies. We hope that this paper can provide assistance for tumor-targeted therapy.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"9 3\",\"pages\":\"Article 100770\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924001011/pdfft?md5=80fde258d9ab4f5944194206d89b454a&pid=1-s2.0-S2468217924001011-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924001011\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001011","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于药物在体内的非特异性分布,以及传统化疗中药物在肿瘤部位的低浓度,导致了明显的副作用和肿瘤耐药性。因此,迫切需要开发一种能够精确靶向肿瘤的给药系统(DDS)。金属有机框架(MOFs)具有源自有机和无机材料的优势特性,包括粒径小、比表面积大、载药能力强、结构和孔径可调以及易于改性。因此,MOFs 在设计主动靶向、被动靶向和刺激响应靶向策略方面具有独特的优势,已成为当前肿瘤靶向给药系统研究的热点。本综述将从不同靶向策略的角度阐述 MOFs 在肿瘤靶向给药系统中的应用。希望本文能为肿瘤靶向治疗提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The utilization of metal-organic frameworks in tumor-targeted drug delivery systems

Due to the non-specific distribution of drugs in the body and the low concentration at the tumor site in traditional chemotherapy, there are challenges associated with significant side effects and tumor resistance. Therefore, a drug delivery system (DDS) urgently needs to be developed that can precisely target tumors. Metal-organic frameworks (MOFs) possess advantageous characteristics derived from organic and inorganic materials, including small particle size, large specific surface area, high drug loading capacity, adjustable structure and pore size, as well as ease of modification. Consequently, MOFs offer unique advantages for designing active targeting, passive targeting, and stimulus-responsive targeting strategies and have become a hot topic of current research on tumor-targeted drug delivery systems. This review will elaborate on the application of MOFs in tumor-targeted drug delivery systems from the perspective of different targeting strategies. We hope that this paper can provide assistance for tumor-targeted therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
期刊最新文献
Harnessing ambient sound: Different approaches to acoustic energy harvesting using triboelectric nanogenerators A novel carbon quantum dot (CQD) synthesis method with cost-effective reactants and a definitive indication: Hot bubble synthesis (HBBBS) Pt/ZnO and Pt/few-layer graphene/ZnO Schottky devices with Al ohmic contacts using Atlas simulation and machine learning Photothermal impacts induced by laser pulse in a 2D semiconducting medium with temperature-dependent properties under strain–temperature rate-dependent theory Comparative analysis of microlens array formation in fused silica glass by laser: Femtosecond versus picosecond pulses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1