大分子原药合成方法的最新进展

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2024-08-01 DOI:10.1016/j.progpolymsci.2024.101855
Julien Alex , Christine Weber , Carlos Guerrero-Sanchez , Ulrich S. Schubert
{"title":"大分子原药合成方法的最新进展","authors":"Julien Alex ,&nbsp;Christine Weber ,&nbsp;Carlos Guerrero-Sanchez ,&nbsp;Ulrich S. Schubert","doi":"10.1016/j.progpolymsci.2024.101855","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decades, nanoscale drug delivery systems have gained great attention partly due to their ability to improve the bioavailability of water insoluble drugs. To this end, the general aim in developing nanomedicine is to enhance efficacy, drug stability and drug safety profile ideally by an active- or passive-cell specific targeting effect. Alteration of dose-response and potential personalization might be future trademarks of nanomedicine. Macromolecular prodrugs (MPDs) represent a sub-class of polymer-drug conjugates featuring a degradable linkage between a macromolecule and a drug. MPDs are in particular interesting due to their capability to prolong blood circulation and to reduce side effects caused by minimized premature drug leakage. The maximum drug loading capacity is another advantage of MPDs over conventional nanomedicines. The chemical accessibility of drug conjugates and polymer carrier materials as well as recent developments in the MPD design of the last five years are summarized in this review article.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"155 ","pages":"Article 101855"},"PeriodicalIF":26.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079670024000728/pdfft?md5=527a3beda1a41282ad12447f2a9dfcde&pid=1-s2.0-S0079670024000728-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent developments in synthetic approaches for macromolecular prodrugs\",\"authors\":\"Julien Alex ,&nbsp;Christine Weber ,&nbsp;Carlos Guerrero-Sanchez ,&nbsp;Ulrich S. Schubert\",\"doi\":\"10.1016/j.progpolymsci.2024.101855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decades, nanoscale drug delivery systems have gained great attention partly due to their ability to improve the bioavailability of water insoluble drugs. To this end, the general aim in developing nanomedicine is to enhance efficacy, drug stability and drug safety profile ideally by an active- or passive-cell specific targeting effect. Alteration of dose-response and potential personalization might be future trademarks of nanomedicine. Macromolecular prodrugs (MPDs) represent a sub-class of polymer-drug conjugates featuring a degradable linkage between a macromolecule and a drug. MPDs are in particular interesting due to their capability to prolong blood circulation and to reduce side effects caused by minimized premature drug leakage. The maximum drug loading capacity is another advantage of MPDs over conventional nanomedicines. The chemical accessibility of drug conjugates and polymer carrier materials as well as recent developments in the MPD design of the last five years are summarized in this review article.</p></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"155 \",\"pages\":\"Article 101855\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000728/pdfft?md5=527a3beda1a41282ad12447f2a9dfcde&pid=1-s2.0-S0079670024000728-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024000728\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024000728","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,纳米级给药系统获得了极大关注,部分原因是它们能够提高水溶性药物的生物利用度。为此,开发纳米药物的总体目标是通过主动或被动的细胞特异性靶向效应来提高药效、药物稳定性和药物安全性。改变剂量反应和潜在的个性化可能是纳米药物未来的标志。大分子原药(MPDs)是聚合物-药物共轭物的一个亚类,其特点是大分子与药物之间具有可降解的连接。大分子原药具有延长血液循环和减少药物过早渗漏所带来的副作用的功能,因此特别引人关注。与传统纳米药物相比,MPD 的另一个优势是具有最大的药物负载能力。本综述文章概述了药物共轭物和聚合物载体材料的化学可及性以及过去五年中 MPD 设计的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent developments in synthetic approaches for macromolecular prodrugs

In the last decades, nanoscale drug delivery systems have gained great attention partly due to their ability to improve the bioavailability of water insoluble drugs. To this end, the general aim in developing nanomedicine is to enhance efficacy, drug stability and drug safety profile ideally by an active- or passive-cell specific targeting effect. Alteration of dose-response and potential personalization might be future trademarks of nanomedicine. Macromolecular prodrugs (MPDs) represent a sub-class of polymer-drug conjugates featuring a degradable linkage between a macromolecule and a drug. MPDs are in particular interesting due to their capability to prolong blood circulation and to reduce side effects caused by minimized premature drug leakage. The maximum drug loading capacity is another advantage of MPDs over conventional nanomedicines. The chemical accessibility of drug conjugates and polymer carrier materials as well as recent developments in the MPD design of the last five years are summarized in this review article.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1