通过领域自适应完善地球物理场重建的自监督框架

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-07-24 DOI:10.1029/2023EA003197
Liwen Wang, Qian Li, Tianying Wang, Qi Lv, Xuan Peng
{"title":"通过领域自适应完善地球物理场重建的自监督框架","authors":"Liwen Wang,&nbsp;Qian Li,&nbsp;Tianying Wang,&nbsp;Qi Lv,&nbsp;Xuan Peng","doi":"10.1029/2023EA003197","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003197","citationCount":"0","resultStr":"{\"title\":\"A Self-Supervised Framework for Refined Reconstruction of Geophysical Fields via Domain Adaptation\",\"authors\":\"Liwen Wang,&nbsp;Qian Li,&nbsp;Tianying Wang,&nbsp;Qi Lv,&nbsp;Xuan Peng\",\"doi\":\"10.1029/2023EA003197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003197\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003197","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

从时间演化的粗尺度地球物理场中重建精细、详细的空间结构是一项长期挑战。目前解决这一问题的深度学习方法通常需要大量的精细尺度场作为监督,而由于现有观测系统的限制和广泛使用的高精度传感器的稀缺,这种监督往往是不可用的。在此,我们提出了 AdaptDeep,这是一个自监督框架,通过从粗尺度源域到细尺度目标域的域自适应,实现地球物理场的精细化重建。该方法结合了两个前置任务:裁剪场重建和时间增强辅助对比学习,以利用目标域中的空间和时间相关性。在特征提取网络中提出了一种全局传播结构,以利用双向信息增强远距离依赖性和对估计错误的鲁棒性。在实验中,AdaptDeep 能正确识别局部精细结构,并显著恢复海面温度场 81.2% 的详细信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self-Supervised Framework for Refined Reconstruction of Geophysical Fields via Domain Adaptation

Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised 3-D Subsurface Geophysical Modeling of the Charity Shoal Structure: A Probable Late Proterozoic-Early Paleozoic Simple Impact Structure in Eastern Lake Ontario Study on Acoustic Variability Affected by Upper Ocean Dynamics in South Eastern Arabian Sea Monthly Prediction on Summer Extreme Precipitation With a Deep Learning Approach: Experiments Over the Mid-To-Lower Reaches of the Yangtze River A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1