Liwen Wang, Qian Li, Tianying Wang, Qi Lv, Xuan Peng
{"title":"通过领域自适应完善地球物理场重建的自监督框架","authors":"Liwen Wang, Qian Li, Tianying Wang, Qi Lv, Xuan Peng","doi":"10.1029/2023EA003197","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003197","citationCount":"0","resultStr":"{\"title\":\"A Self-Supervised Framework for Refined Reconstruction of Geophysical Fields via Domain Adaptation\",\"authors\":\"Liwen Wang, Qian Li, Tianying Wang, Qi Lv, Xuan Peng\",\"doi\":\"10.1029/2023EA003197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003197\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003197","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A Self-Supervised Framework for Refined Reconstruction of Geophysical Fields via Domain Adaptation
Reconstructing fine-grained, detailed spatial structures from time-evolving coarse-scale geophysical fields has been a long-standing challenge. Current deep learning approaches addressing this issue generally require massive fine-scale fields as supervision, which is often unavailable due to limitations in existing observational systems and the scarcity of widespread high-precision sensors. Here, we present AdaptDeep, a self-supervised framework for refined reconstruction of geophysical fields via domain adaptation from the coarse-scale source domain to the fine-scale target domain. This method incorporates two pretext tasks, cropped field reconstruction and temporal augmentation-assisted contrastive learning, to leverage spatial and temporal correlations in the target domain. A global propagation structure is proposed in the feature extraction network to leverage bidirectional information for enhanced long-range dependencies and robustness against estimation errors. In experiments, AdaptDeep correctly identifies local, fine structures and significantly recovers 81.2% detailed information in sea surface temperature fields.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.