多功能非晶体/晶体界面呈现强导电纳米金属玻璃/铝复合材料

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2024-07-17 DOI:10.1016/j.ijplas.2024.104077
Yuyang Liu , Lei Zhao , Yixuan Hu , Ge Wang , Wangshu Zheng , Tim Vogel , Kolan M. Reddy , Yubin Ke , Qiang Guo
{"title":"多功能非晶体/晶体界面呈现强导电纳米金属玻璃/铝复合材料","authors":"Yuyang Liu ,&nbsp;Lei Zhao ,&nbsp;Yixuan Hu ,&nbsp;Ge Wang ,&nbsp;Wangshu Zheng ,&nbsp;Tim Vogel ,&nbsp;Kolan M. Reddy ,&nbsp;Yubin Ke ,&nbsp;Qiang Guo","doi":"10.1016/j.ijplas.2024.104077","DOIUrl":null,"url":null,"abstract":"<div><p>Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"180 ","pages":"Article 104077"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-functional amorphous/crystalline interfaces rendering strong-and-ductile nano-metallic-glass/aluminum composite\",\"authors\":\"Yuyang Liu ,&nbsp;Lei Zhao ,&nbsp;Yixuan Hu ,&nbsp;Ge Wang ,&nbsp;Wangshu Zheng ,&nbsp;Tim Vogel ,&nbsp;Kolan M. Reddy ,&nbsp;Yubin Ke ,&nbsp;Qiang Guo\",\"doi\":\"10.1016/j.ijplas.2024.104077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"180 \",\"pages\":\"Article 104077\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002043\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属基复合材料(MMC)是严酷工况下大量重要应用的首选材料。然而,由于基体和增强材料之间的相位反差较大,金属基复合材料的强度和电导率之间的矛盾依然突出。在这里,我们制造了一种新型铝(Al)基复合材料,它由可变形的钴-锆-硼(CoZrB)金属玻璃纳米颗粒增强。颗粒增强量仅为 2.0 Vol.% 的无定形 CoZrB/Al 复合材料的单轴拉伸强度为 387.0 ± 1.2 MPa,在类似的均匀伸长率条件下,比未增强的纯铝基体提高了 80% 以上。该复合材料的强度-电导率协同作用也明显优于全结晶纳米粒子增强的复合材料。无定形颗粒/基体界面的独特多功能性证明了这些发现的合理性,它能有效地将基体的载荷转移到颗粒上,协调纳米颗粒和基体的共同变形,并在复合材料中传授一种具有广泛基体塑性变形的跨晶断裂模式。本研究中开发的方法对其他基体和金属玻璃纳米颗粒成分也普遍有效,我们的工作可能会为先进结构应用中高性能金属基复合材料的开发带来新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-functional amorphous/crystalline interfaces rendering strong-and-ductile nano-metallic-glass/aluminum composite

Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0 ± 1.2 MPa, showing over 80 % improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Formation of core-shell nanoprecipitates and their effects on work hardening in an ultrahigh-strength stainless steel Hydrostatic pressure-mediated grain boundary smoothing and plastic deformability in high-entropy alloys Training of a Physics-based Thermo-Viscoplasticity Model on Big Data for Polypropylene Investigation of full-field strain evolution behavior of Cu/Ni clad foils by interpretable machine learning Plastic Flow Instability in Austenitic Stainless Steels at Room Temperature: Macroscopic Tests and Microstructural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1