Mingming Zhao, Ning Cao, Huijun Gu, Jiachao Xu, Wenli Xu, Di Zhang, Tong-You Wade Wei, Kang Wang, Ruiping Guo, Hongtu Cui, Xiaofeng Wang, Xin Guo, Zhiyuan Li, Kangmin He, Zijian Li, Youyi Zhang, John Y-J Shyy, Erdan Dong, Han Xiao
{"title":"AMPK通过β-阿瑞斯汀-1-ser330的磷酸化减轻β-肾上腺素能受体诱导的心脏损伤","authors":"Mingming Zhao, Ning Cao, Huijun Gu, Jiachao Xu, Wenli Xu, Di Zhang, Tong-You Wade Wei, Kang Wang, Ruiping Guo, Hongtu Cui, Xiaofeng Wang, Xin Guo, Zhiyuan Li, Kangmin He, Zijian Li, Youyi Zhang, John Y-J Shyy, Erdan Dong, Han Xiao","doi":"10.1161/CIRCRESAHA.124.324762","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear.</p><p><strong>Methods: </strong>Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult.</p><p><strong>Results: </strong>Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice.</p><p><strong>Conclusions: </strong>AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330.\",\"authors\":\"Mingming Zhao, Ning Cao, Huijun Gu, Jiachao Xu, Wenli Xu, Di Zhang, Tong-You Wade Wei, Kang Wang, Ruiping Guo, Hongtu Cui, Xiaofeng Wang, Xin Guo, Zhiyuan Li, Kangmin He, Zijian Li, Youyi Zhang, John Y-J Shyy, Erdan Dong, Han Xiao\",\"doi\":\"10.1161/CIRCRESAHA.124.324762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear.</p><p><strong>Methods: </strong>Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult.</p><p><strong>Results: </strong>Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice.</p><p><strong>Conclusions: </strong>AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.324762\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324762","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
背景:β-肾上腺素能受体(β-AR)过度激活是与心脏损伤和疾病相关的主要病理线索。AMPK(AMP 激活蛋白激酶)是一种保守的能量传感器,可调节能量代谢并具有心脏保护作用。然而,AMPK是否通过调节β-AR下游的信号通路来发挥心脏保护作用仍不清楚:方法:我们利用免疫沉淀、质谱分析、位点特异性突变、体外激酶测定和体内动物实验,确定了 AMPK 是否会使β-arrestin-1 在丝氨酸(Ser)330 处磷酸化。给野生型小鼠和位点特异性突变(S330A基因敲入[KI]/S330D KI)小鼠皮下注射β-AR激动剂异丙肾上腺素(5 mg/kg),以评估β-肾上腺素能损伤与β-arrestin-1 Ser330磷酸化之间的因果关系。心脏转录组学用于确定β-arrestin-1-S330A/S330D突变和β-肾上腺素损伤引起的基因表达变化:结果:二甲双胍可降低异丙肾上腺素诱导的cAMP/PKA(蛋白激酶A)信号传导。AMPK与β-arrestin-1结合并磷酸化Ser330,其磷酸化质谱得分最高。在体外和体内,AMPK的激活促进了β-arrestin-1 Ser330的磷酸化。过表达β-arrestin-1-S330D(活性形式)的新生小鼠心肌细胞通过增加PDE(磷酸二酯酶)4的表达和活性来抑制β-AR/cAMP/PKA轴。心脏转录组学显示,异丙肾上腺素处理的 S330A KI 和 S330D KI 小鼠之间表达不同的基因主要涉及免疫过程和炎症反应。在新生小鼠心肌细胞中,β-arrestin-1 Ser330磷酸化抑制了异丙托品醇诱导的活性氧产生和NLRP3(NOD样受体蛋白3)炎性组的激活。在 S330D KI 小鼠中,β-AR 激活的 cAMP/PKA 通路被削弱,导致炎症小体激活被抑制,促炎细胞因子表达减少,巨噬细胞浸润减轻。与 S330A KI 小鼠相比,S330D KI 小鼠在接触异丙肾上腺素后,心脏纤维化减轻,心脏功能改善。然而,在 S330A KI 小鼠中,AMPK 对心脏的保护作用消失了:结论:AMPK 对 β-arrestin-1 Ser330 的磷酸化增强了 PDE4 的表达和活性,从而抑制了 β-AR/cAMP/PKA 的激活。随后,β-arrestin-1 Ser330 磷酸化阻断了 β-AR 诱导的心脏炎症小体激活和重塑。
AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330.
Background: β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear.
Methods: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult.
Results: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice.
Conclusions: AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.