Cícero Andrade Sigilião Celles, Andréa Cândido dos Reis
{"title":"钛:晶体学剖面与细胞粘附力之间关系的系统回顾。","authors":"Cícero Andrade Sigilião Celles, Andréa Cândido dos Reis","doi":"10.1002/jbm.b.35450","DOIUrl":null,"url":null,"abstract":"<p>Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: “What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?” by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion\",\"authors\":\"Cícero Andrade Sigilião Celles, Andréa Cândido dos Reis\",\"doi\":\"10.1002/jbm.b.35450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: “What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?” by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35450\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35450","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion
Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: “What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?” by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.