人工智能增强型心电图作为心脏和非心脏疾病统一筛查工具的前景:一项急诊护理探索性研究。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-05-12 eCollection Date: 2024-07-01 DOI:10.1093/ehjdh/ztae039
Nils Strodthoff, Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp
{"title":"人工智能增强型心电图作为心脏和非心脏疾病统一筛查工具的前景:一项急诊护理探索性研究。","authors":"Nils Strodthoff, Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp","doi":"10.1093/ehjdh/ztae039","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Current deep learning algorithms for automatic ECG analysis have shown notable accuracy but are typically narrowly focused on singular diagnostic conditions. This exploratory study aims to investigate the capability of a single deep learning model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a single ECG collected in the emergency department.</p><p><strong>Methods and results: </strong>In this study, we assess the performance of a model trained to predict a broad spectrum of diagnoses. We find that the model can reliably predict 253 ICD codes (81 cardiac and 172 non-cardiac) in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.</p><p><strong>Conclusion: </strong>The model demonstrates proficiency in handling a wide array of cardiac and non-cardiac diagnostic scenarios, indicating its potential as a comprehensive screening tool for diverse medical encounters.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 4","pages":"454-460"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284007/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prospects for artificial intelligence-enhanced electrocardiogram as a unified screening tool for cardiac and non-cardiac conditions: an explorative study in emergency care.\",\"authors\":\"Nils Strodthoff, Juan Miguel Lopez Alcaraz, Wilhelm Haverkamp\",\"doi\":\"10.1093/ehjdh/ztae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Current deep learning algorithms for automatic ECG analysis have shown notable accuracy but are typically narrowly focused on singular diagnostic conditions. This exploratory study aims to investigate the capability of a single deep learning model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a single ECG collected in the emergency department.</p><p><strong>Methods and results: </strong>In this study, we assess the performance of a model trained to predict a broad spectrum of diagnoses. We find that the model can reliably predict 253 ICD codes (81 cardiac and 172 non-cardiac) in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.</p><p><strong>Conclusion: </strong>The model demonstrates proficiency in handling a wide array of cardiac and non-cardiac diagnostic scenarios, indicating its potential as a comprehensive screening tool for diverse medical encounters.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 4\",\"pages\":\"454-460\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:目前用于自动心电图分析的深度学习算法已显示出显著的准确性,但通常只专注于单一的诊断条件。这项探索性研究旨在调查单一深度学习模型的能力,以根据急诊科收集的单一心电图预测各种心脏和非心脏出院诊断:在本研究中,我们评估了一个经过训练的模型的性能,该模型可预测各种诊断。我们发现,该模型可以可靠地预测 253 个 ICD 代码(81 个心脏疾病和 172 个非心脏疾病),其 AUROC 分数超过 0.8,具有显著的统计学意义:结论:该模型能熟练处理各种心脏和非心脏疾病诊断情况,表明它有潜力成为适用于各种医疗情况的综合筛查工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospects for artificial intelligence-enhanced electrocardiogram as a unified screening tool for cardiac and non-cardiac conditions: an explorative study in emergency care.

Aims: Current deep learning algorithms for automatic ECG analysis have shown notable accuracy but are typically narrowly focused on singular diagnostic conditions. This exploratory study aims to investigate the capability of a single deep learning model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a single ECG collected in the emergency department.

Methods and results: In this study, we assess the performance of a model trained to predict a broad spectrum of diagnoses. We find that the model can reliably predict 253 ICD codes (81 cardiac and 172 non-cardiac) in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.

Conclusion: The model demonstrates proficiency in handling a wide array of cardiac and non-cardiac diagnostic scenarios, indicating its potential as a comprehensive screening tool for diverse medical encounters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1