Shuang Chen, Yuting Shi, Linlin Wan, Jing Liu, Yongyan Wan, Hong Jiang, Rong Qiu
{"title":"利用经颅超声波成像检测帕金森病的注意力增强扩张卷积。","authors":"Shuang Chen, Yuting Shi, Linlin Wan, Jing Liu, Yongyan Wan, Hong Jiang, Rong Qiu","doi":"10.1186/s12938-024-01265-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis.</p><p><strong>Methods: </strong>This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities.</p><p><strong>Results: </strong>The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models.</p><p><strong>Conclusion: </strong>The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"76"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290250/pdf/","citationCount":"0","resultStr":"{\"title\":\"Attention-enhanced dilated convolution for Parkinson's disease detection using transcranial sonography.\",\"authors\":\"Shuang Chen, Yuting Shi, Linlin Wan, Jing Liu, Yongyan Wan, Hong Jiang, Rong Qiu\",\"doi\":\"10.1186/s12938-024-01265-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis.</p><p><strong>Methods: </strong>This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities.</p><p><strong>Results: </strong>The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models.</p><p><strong>Conclusion: </strong>The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"23 1\",\"pages\":\"76\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01265-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01265-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Attention-enhanced dilated convolution for Parkinson's disease detection using transcranial sonography.
Background: Transcranial sonography (TCS) plays a crucial role in diagnosing Parkinson's disease. However, the intricate nature of TCS pathological features, the lack of consistent diagnostic criteria, and the dependence on physicians' expertise can hinder accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine learning, often involve complex feature engineering and may struggle to capture deep image features. While deep learning offers advantages in image processing, it has not been tailored to address specific TCS and movement disorder considerations. Consequently, there is a scarcity of research on deep learning algorithms for TCS-based PD diagnosis.
Methods: This study introduces a deep learning residual network model, augmented with attention mechanisms and multi-scale feature extraction, termed AMSNet, to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is implemented to robustly handle the irregular morphological features and significant area information present in TCS images. This module effectively mitigates the effects of artifacts and noise. When combined with a convolutional attention module, it enhances the model's ability to learn features of lesion areas. Subsequently, a residual network architecture, integrated with channel attention, is utilized to capture hierarchical and detailed textures within the images, further enhancing the model's feature representation capabilities.
Results: The study compiled TCS images and personal data from 1109 participants. Experiments conducted on this dataset demonstrated that AMSNet achieved remarkable classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It surpassed the performance of previously employed machine learning algorithms in this domain, as well as current general-purpose deep learning models.
Conclusion: The AMSNet proposed in this study deviates from traditional machine learning approaches that necessitate intricate feature engineering. It is capable of automatically extracting and learning deep pathological features, and has the capacity to comprehend and articulate complex data. This underscores the substantial potential of deep learning methods in the application of TCS images for the diagnosis of movement disorders.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering