改善真实数据应用的严谨性和可重复性的因果路线图和模拟。

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Epidemiology Pub Date : 2024-11-01 Epub Date: 2024-08-01 DOI:10.1097/EDE.0000000000001773
Nerissa Nance, Maya L Petersen, Mark van der Laan, Laura B Balzer
{"title":"改善真实数据应用的严谨性和可重复性的因果路线图和模拟。","authors":"Nerissa Nance, Maya L Petersen, Mark van der Laan, Laura B Balzer","doi":"10.1097/EDE.0000000000001773","DOIUrl":null,"url":null,"abstract":"<p><p>The Causal Roadmap outlines a systematic approach to asking and answering questions of cause and effect: define the quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret results. To protect research integrity, it is essential that the algorithm for statistical estimation and inference be prespecified prior to conducting any effectiveness analyses. However, it is often unclear which algorithm will perform optimally for the real-data application. Instead, there is a temptation to simply implement one's favorite algorithm, recycling prior code or relying on the default settings of a computing package. Here, we call for the use of simulations that realistically reflect the application, including key characteristics such as strong confounding and dependent or missing outcomes, to objectively compare candidate estimators and facilitate full specification of the statistical analysis plan. Such simulations are informed by the Causal Roadmap and conducted after data collection but prior to effect estimation. We illustrate with two worked examples. First, in an observational longitudinal study, we use outcome-blind simulations to inform nuisance parameter estimation and variance estimation for longitudinal targeted minimum loss-based estimation. Second, in a cluster randomized trial with missing outcomes, we use treatment-blind simulations to examine type-I error control in two-stage targeted minimum loss-based estimation. In both examples, realistic simulations empower us to prespecify an estimation approach with strong expected finite sample performance, and also produce quality-controlled computing code for the actual analysis. Together, this process helps to improve the rigor and reproducibility of our research.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"791-800"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444352/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Causal Roadmap and Simulations to Improve the Rigor and Reproducibility of Real-data Applications.\",\"authors\":\"Nerissa Nance, Maya L Petersen, Mark van der Laan, Laura B Balzer\",\"doi\":\"10.1097/EDE.0000000000001773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Causal Roadmap outlines a systematic approach to asking and answering questions of cause and effect: define the quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret results. To protect research integrity, it is essential that the algorithm for statistical estimation and inference be prespecified prior to conducting any effectiveness analyses. However, it is often unclear which algorithm will perform optimally for the real-data application. Instead, there is a temptation to simply implement one's favorite algorithm, recycling prior code or relying on the default settings of a computing package. Here, we call for the use of simulations that realistically reflect the application, including key characteristics such as strong confounding and dependent or missing outcomes, to objectively compare candidate estimators and facilitate full specification of the statistical analysis plan. Such simulations are informed by the Causal Roadmap and conducted after data collection but prior to effect estimation. We illustrate with two worked examples. First, in an observational longitudinal study, we use outcome-blind simulations to inform nuisance parameter estimation and variance estimation for longitudinal targeted minimum loss-based estimation. Second, in a cluster randomized trial with missing outcomes, we use treatment-blind simulations to examine type-I error control in two-stage targeted minimum loss-based estimation. In both examples, realistic simulations empower us to prespecify an estimation approach with strong expected finite sample performance, and also produce quality-controlled computing code for the actual analysis. Together, this process helps to improve the rigor and reproducibility of our research.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"791-800\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001773\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001773","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

因果关系路线图概述了提出和回答因果关系问题的系统方法:定义感兴趣的数量、评估所需假设、进行统计估算并仔细解释结果。为了保护研究的完整性,在进行任何有效性分析之前,必须预先确定统计估算和推断的算法。然而,人们往往不清楚哪种算法在实际数据应用中表现最佳。相反,人们往往会简单地执行自己喜欢的算法,重复使用先前的代码或依赖于计算软件包的默认设置。在此,我们呼吁使用能真实反映应用的模拟,包括强混杂、依赖或缺失结果等关键特征,以客观地比较候选估计器,并促进统计分析计划的全面规范化。此类模拟以因果关系路线图为依据,在数据收集之后、效应估计之前进行。我们用两个实例来说明。首先,在一项观察性纵向研究中,我们使用结果盲模拟为基于最小损失的纵向目标估算的滋扰参数估计和方差估计提供信息。其次,在一项结果缺失的群组随机试验中,我们使用治疗盲模拟来检验基于最小损失的两阶段目标估计中的I型误差控制。在这两个例子中,现实模拟使我们有能力预先指定一种估计方法,这种方法预计具有很强的有限样本性能,同时还能为实际分析提供质量可控的计算代码。这一过程有助于提高我们研究的严谨性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Causal Roadmap and Simulations to Improve the Rigor and Reproducibility of Real-data Applications.

The Causal Roadmap outlines a systematic approach to asking and answering questions of cause and effect: define the quantity of interest, evaluate needed assumptions, conduct statistical estimation, and carefully interpret results. To protect research integrity, it is essential that the algorithm for statistical estimation and inference be prespecified prior to conducting any effectiveness analyses. However, it is often unclear which algorithm will perform optimally for the real-data application. Instead, there is a temptation to simply implement one's favorite algorithm, recycling prior code or relying on the default settings of a computing package. Here, we call for the use of simulations that realistically reflect the application, including key characteristics such as strong confounding and dependent or missing outcomes, to objectively compare candidate estimators and facilitate full specification of the statistical analysis plan. Such simulations are informed by the Causal Roadmap and conducted after data collection but prior to effect estimation. We illustrate with two worked examples. First, in an observational longitudinal study, we use outcome-blind simulations to inform nuisance parameter estimation and variance estimation for longitudinal targeted minimum loss-based estimation. Second, in a cluster randomized trial with missing outcomes, we use treatment-blind simulations to examine type-I error control in two-stage targeted minimum loss-based estimation. In both examples, realistic simulations empower us to prespecify an estimation approach with strong expected finite sample performance, and also produce quality-controlled computing code for the actual analysis. Together, this process helps to improve the rigor and reproducibility of our research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
期刊最新文献
A structural description of biases that generate immortal time. Associations Between Gestational Residential Radon Exposure and Term Low Birthweight in Connecticut, USA. Prenatal Exposure to Nonpersistent Chemicals and Fetal-to-childhood Growth Trajectories. Preventable Fraction in the Context of Disease Progression. A Counterfactual Analysis of Impact of Cesarean Birth in a First Birth on Severe Maternal Morbidity in the Subsequent Birth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1